Energy minimization in medical image analysis: Methodologies and applications

Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety of optimization schemes have been developed. In this paper, we present a comprehensive survey of the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories: continuous method and discrete method. The former includes Newton-Raphson method, gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-reweighted message passing method, linear programming method, maximum margin learning method, simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface method, primal-dual method, and the multi-objective optimization method. In addition, we review several comparative studies that evaluate the performance of different minimization techniques in terms of accuracy, efficiency, or complexity. These optimization techniques are widely used in many medical applications, for example, image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an overview on those applications as well.

[1]  Yogesh Rathi,et al.  Shape-Based Approach to Robust Image Segmentation using Kernel PCA , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[2]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[3]  Alistair A. Young,et al.  Non-rigid heart wall motion using MR tagging , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  C. Kambhamettu,et al.  Curvature-based approach to point correspondence recovery in conformal nonrigid motion , 1994 .

[5]  W. Eric L. Grimson,et al.  A shape-based approach to the segmentation of medical imagery using level sets , 2003, IEEE Transactions on Medical Imaging.

[6]  Max A. Viergever,et al.  Multiscale vessel tracking , 2004, IEEE Transactions on Medical Imaging.

[7]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[8]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[9]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[10]  Thomas Martin Deserno,et al.  A General Discrete Contour Model in Two, Three, and Four Dimensions for Topology-Adaptive Multichannel Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Jayaram K. Udupa,et al.  Segmentation of 3D objects using live wire , 1997, Medical Imaging.

[12]  Giandomenico Mastroeni,et al.  Separation of sets and Wolfe duality , 2008, J. Glob. Optim..

[13]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[14]  Zhi-Quan Luo,et al.  On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.

[15]  Jerry L. Prince,et al.  Image registration based on boundary mapping , 1996, IEEE Trans. Medical Imaging.

[16]  Paul A. Yushkevich,et al.  Deformable M-Reps for 3D Medical Image Segmentation , 2003, International Journal of Computer Vision.

[17]  Ben Taskar,et al.  Discriminative learning of Markov random fields for segmentation of 3D scan data , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[18]  Nicholas Ayache,et al.  A General Scheme for Automatically Building 3D Morphometric Anatomical Atlases: application to a Sku , 1995 .

[19]  Alok Gupta,et al.  Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Wiro J. Niessen,et al.  Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts , 2008, NeuroImage.

[21]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[22]  Timothy F. Cootes,et al.  A mixture model for representing shape variation , 1999, Image Vis. Comput..

[23]  E. Süli,et al.  An introduction to numerical analysis , 2003 .

[24]  Xianghua Xie,et al.  Combining region-based and imprecise boundary-based cues for interactive medical image segmentation. , 2014, International journal for numerical methods in biomedical engineering.

[25]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Max Mignotte,et al.  Three-dimensional biplanar reconstruction of scoliotic rib cage using the estimation of a mixture of probabilistic prior models , 2005, IEEE Transactions on Biomedical Engineering.

[27]  Ghassan Hamarneh,et al.  Medial-Based Deformable Models in Nonconvex Shape-Spaces for Medical Image Segmentation , 2012, IEEE Transactions on Medical Imaging.

[28]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[29]  M. Viergever,et al.  Medical image matching-a review with classification , 1993, IEEE Engineering in Medicine and Biology Magazine.

[30]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[31]  Wotao Yin,et al.  Analysis and Generalizations of the Linearized Bregman Method , 2010, SIAM J. Imaging Sci..

[32]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[33]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[34]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[35]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[36]  Jinah Park,et al.  Volumetric deformable models with parameter functions: A new approach to the 3D motion analysis of the LV from MRI-SPAMM , 1995, Proceedings of IEEE International Conference on Computer Vision.

[37]  Ron Kimmel,et al.  Segmentation of thin structures in volumetric medical images , 2006, IEEE Transactions on Image Processing.

[38]  Christian Gieger,et al.  Genome-Wide Association Study to Identify Common Variants Associated with Brachial Circumference: A Meta-Analysis of 14 Cohorts , 2012, PloS one.

[39]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[41]  Yvan Notay Flexible Conjugate Gradients , 2000, SIAM J. Sci. Comput..

[42]  Peter Boesiger,et al.  Compressed sensing in dynamic MRI , 2008, Magnetic resonance in medicine.

[43]  Alistair A. Young,et al.  Model tags: direct three-dimensional tracking of heart wall motion from tagged magnetic resonance images , 1999, Medical Image Anal..

[44]  Daniel Cremers,et al.  Nonlinear Shape Statistics in Mumford-Shah Based Segmentation , 2002, ECCV.

[45]  Björn Johansson,et al.  The application of an oblique-projected Landweber method to a model of supervised learning , 2006, Math. Comput. Model..

[46]  Anthony J. Yezzi,et al.  Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification , 2001, IEEE Trans. Image Process..

[47]  Guillermo Sapiro,et al.  Minimal Surfaces Based Object Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Ajit Singh,et al.  Cardiac MR image segmentation using deformable models , 1993, Proceedings of Computers in Cardiology Conference.

[49]  Martin J. Wainwright,et al.  Exact MAP Estimates by (Hyper)tree Agreement , 2002, NIPS.

[50]  Tan Chye Cheah,et al.  Medical image registration by maximizing mutual information based on combination of intensity and gradient information , 2012, 2012 International Conference on Biomedical Engineering (ICoBE).

[51]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[52]  W. Freeman,et al.  Generalized Belief Propagation , 2000, NIPS.

[53]  W. Eric L. Grimson,et al.  Model-based curve evolution technique for image segmentation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[54]  Lucia Ballerini Genetic Snakes for Medical Images Segmentation , 1999, EvoWorkshops.

[55]  Milan Sonka,et al.  Segmentation and interpretation of MR brain images. An improved active shape model , 1998, IEEE Transactions on Medical Imaging.

[56]  R. Dykstra,et al.  A Method for Finding Projections onto the Intersection of Convex Sets in Hilbert Spaces , 1986 .

[57]  James E. Fowler,et al.  Block-Based Compressed Sensing of Images and Video , 2012, Found. Trends Signal Process..

[58]  J. Renaud Numerical Optimization, Theoretical and Practical Aspects— , 2006, IEEE Transactions on Automatic Control.

[59]  Jian Sun,et al.  Lazy snapping , 2004, SIGGRAPH 2004.

[60]  Oliver Serang,et al.  Conic Sampling: An Efficient Method for Solving Linear and Quadratic Programming by Randomly Linking Constraints within the Interior , 2012, PloS one.

[61]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  Karin Schwab,et al.  Best Approximation In Inner Product Spaces , 2016 .

[63]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[64]  Nikolaus Hansen,et al.  Adaptive Encoding: How to Render Search Coordinate System Invariant , 2008, PPSN.

[65]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[66]  Kaleem Siddiqi,et al.  Area and length minimizing flows for shape segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[67]  Nicholas Ayache,et al.  Three-dimensional multimodal brain warping using the Demons algorithm and adaptive intensity corrections , 2001, IEEE Transactions on Medical Imaging.

[68]  Peter Richtárik,et al.  Parallel coordinate descent methods for big data optimization , 2012, Mathematical Programming.

[69]  Alex Pentland,et al.  Recovery of Nonrigid Motion and Structure , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  Laurent D. Cohen,et al.  Tracking and motion analysis of the left ventricle with deformable superquadrics , 1996, Medical Image Anal..

[71]  R. Rockafellar Extension of Fenchel’ duality theorem for convex functions , 1966 .

[72]  Ghassan Hamarneh,et al.  Medical Image Segmentation: Energy Minimization and Deformable Models , 2017 .

[73]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[74]  Dimitris N. Metaxas,et al.  CRF-driven Implicit Deformable Model , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[75]  Dimitris N. Metaxas Physics-Based Deformable Models: Applications to Computer Vision, Graphics, and Medical Imaging , 1996 .

[76]  Ben Taskar,et al.  Max-Margin Markov Networks , 2003, NIPS.

[77]  Johan Montagnat,et al.  A review of deformable surfaces: topology, geometry and deformation , 2001, Image Vis. Comput..

[78]  Paul M. Thompson,et al.  Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment , 2005, NeuroImage.

[79]  Sébastien Ourselin,et al.  A Comprehensive Cardiac Motion Estimation Framework Using Both Untagged and 3-D Tagged MR Images Based on Nonrigid Registration , 2012, IEEE Transactions on Medical Imaging.

[80]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[81]  V.R.S Mani,et al.  Survey of Medical Image Registration , 2013 .

[82]  James S. Duncan,et al.  Deformable boundary finding in medical images by integrating gradient and region information , 1996, IEEE Trans. Medical Imaging.

[83]  Renaud Keriven,et al.  Shape Priors using Manifold Learning Techniques , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[84]  Vladimir Kolmogorov,et al.  Applications of parametric maxflow in computer vision , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[85]  Xianghua Xie,et al.  Integrated Segmentation and Interpolation of Sparse Data , 2014, IEEE Transactions on Image Processing.

[86]  M. Padberg Linear Optimization and Extensions , 1995 .

[87]  Jerry L Prince,et al.  Image Segmentation Using Deformable Models , 2000 .

[88]  Dimitris N. Metaxas,et al.  Shape and Nonrigid Motion Estimation Through Physics-Based Synthesis , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[89]  M. Raydan,et al.  Alternating Projection Methods , 2011 .

[90]  Timothy F. Cootes,et al.  A Unified Framework for Atlas Matching Using Active Appearance Models , 1999, IPMI.

[91]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[92]  Xiaodong Wu,et al.  Optimal Surface Segmentation in Volumetric Images-A Graph-Theoretic Approach , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[93]  Michael Isard,et al.  Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion , 2000 .

[94]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[95]  Thomas P. Dence Cubics, Chaos and Newton's Method , 1997 .

[96]  Shuzhong Zhang,et al.  Pivot rules for linear programming: A survey on recent theoretical developments , 1993, Ann. Oper. Res..

[97]  Michael Möller,et al.  A dual split Bregman method for fast ℓ1 minimization , 2013, Math. Comput..

[98]  D. Louis Collins,et al.  Warping of a computerized 3-D atlas to match brain image volumes for quantitative neuroanatomical and functional analysis , 1991, Medical Imaging.

[99]  Mila Nikolova,et al.  Markovian reconstruction using a GNC approach , 1999, IEEE Trans. Image Process..

[100]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[101]  Xavier Bresson,et al.  Fast Global Minimization of the Active Contour/Snake Model , 2007, Journal of Mathematical Imaging and Vision.

[102]  Arno Klein,et al.  Mindboggle: a scatterbrained approach to automate brain labeling , 2005, NeuroImage.

[103]  P. Siarry,et al.  Multiobjective Optimization: Principles and Case Studies , 2004 .

[104]  Luis Freire,et al.  Registration by maximization of mutual information-a cross validation study , 2000, Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering.

[105]  Johan Montagnat,et al.  Shape and Topology Constraints on Parametric Active Contours , 2001, Comput. Vis. Image Underst..

[106]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[107]  Wotao Yin,et al.  Second-order Cone Programming Methods for Total Variation-Based Image Restoration , 2005, SIAM J. Sci. Comput..

[108]  Ghassan Hamarneh,et al.  Globally optimal spinal cord segmentation using a minimal path in high dimensions , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[109]  Heinz H. Bauschke,et al.  On the convergence of von Neumann's alternating projection algorithm for two sets , 1993 .

[110]  Petia Radeva,et al.  Deformable B-Solids and Implicit Snakes for 3D Localization and Tracking of SPAMM MRI Data , 1997, Comput. Vis. Image Underst..

[111]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[112]  Mordecai Avriel,et al.  Nonlinear programming , 1976 .

[113]  William A. Barrett,et al.  Interactive segmentation of image volumes with Live Surface , 2007, Comput. Graph..

[114]  Dmitry B. Goldgof,et al.  Automatic tracking of SPAMM grid and the estimation of deformation parameters from cardiac MR images , 1994, IEEE Trans. Medical Imaging.

[115]  Paul Suetens,et al.  Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information , 1999, Medical Image Anal..

[116]  Stefan Bauer,et al.  Segmentation of brain tumor images based on atlas-registration combined with a Markov-Random-Field lesion growth model , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[117]  Xianghua Xie,et al.  Interactive Segmentation of Media-Adventitia Border in IVUS , 2013, CAIP.

[118]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[119]  Thomas S. Huang,et al.  Motion analysis and epicardial deformation estimation from angiography data , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[120]  Amir Nakib,et al.  Image thresholding based on Pareto multiobjective optimization , 2010, Eng. Appl. Artif. Intell..

[121]  Xianghua Xie,et al.  Automatic segmentation of lymph vessel wall using optimal surface graph cut and hidden Markov Models , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[122]  Andrew Blake,et al.  LogCut - Efficient Graph Cut Optimization for Markov Random Fields , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[123]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[124]  O. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[125]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[126]  Dmitry B. Goldgof,et al.  Adaptive-Size Meshes for Rigid and Nonrigid Shape Analysis and Synthesis , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[127]  Yair Weiss,et al.  Globally optimal solutions for energy minimization in stereo vision using reweighted belief propagation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[128]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[129]  Norbert Schuff,et al.  Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease , 2010, NeuroImage.

[130]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[131]  A. Nachman,et al.  Convergence of the alternating split Bregman algorithm in infinite-dimensional Hilbert spaces , 2011, 1112.1960.

[132]  Vsevolod I. Ivanov On the optimality of some classes of invex problems , 2012, Optim. Lett..

[133]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[134]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[135]  Robert Krauthgamer,et al.  Approximate classification via earthmover metrics , 2004, SODA '04.

[136]  Alfred M. Bruckstein,et al.  Finding Shortest Paths on Surfaces Using Level Sets Propagation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[137]  Richard H. Byrd,et al.  Analysis of a Symmetric Rank-One Trust Region Method , 1996, SIAM J. Optim..

[138]  Josien P. W. Pluim,et al.  Evaluation of Optimization Methods for Nonrigid Medical Image Registration Using Mutual Information and B-Splines , 2007, IEEE Transactions on Image Processing.

[139]  James S. Duncan,et al.  Bending and stretching models for LV wall motion analysis from curves and surfaces , 1992, Image Vis. Comput..

[140]  Xianghua Xie,et al.  Level set segmentation with robust image gradient energy and statistical shape prior , 2011, 2011 18th IEEE International Conference on Image Processing.

[141]  Ivo F. Sbalzarini,et al.  An alternating split Bregman algorithm for multi-region segmentation , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[142]  Nikos Komodakis,et al.  A new framework for approximate labeling via graph cuts , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[143]  William A. Barrett,et al.  Interactive live-wire boundary extraction , 1997, Medical Image Anal..

[144]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[145]  E.J. Candes Compressive Sampling , 2022 .

[146]  Earl R. Barnes,et al.  A variation on Karmarkar’s algorithm for solving linear programming problems , 1986, Math. Program..

[147]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[148]  Michèle Sebag,et al.  Comparison-Based Optimizers Need Comparison-Based Surrogates , 2010, PPSN.

[149]  Robert T. Schultz,et al.  Segmentation and Measurement of the Cortex from 3D MR Images , 1998, MICCAI.

[150]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[151]  René Schöne,et al.  Vector Image Segmentation by Piecewise Continuous Approximation , 2006, Journal of Mathematical Imaging and Vision.

[152]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[153]  Charles R. Meyer,et al.  Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations , 1997, Medical Image Anal..

[154]  R. Bajcsy,et al.  Elastically Deforming 3D Atlas to Match Anatomical Brain Images , 1993, Journal of computer assisted tomography.

[155]  W. Eric L. Grimson,et al.  Mutual information in coupled multi-shape model for medical image segmentation , 2004, Medical Image Anal..

[156]  Ghassan Hamarneh,et al.  Is a Single Energy Functional Sufficient? Adaptive Energy Functionals and Automatic Initialization , 2007, MICCAI.

[157]  Alejandro F. Frangi,et al.  Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling , 2002, IEEE Transactions on Medical Imaging.

[158]  W. Fenchel Convex cones, sets, and functions , 1953 .

[159]  Rachid Deriche,et al.  A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape , 2007, International Journal of Computer Vision.

[160]  László Lovász,et al.  On the ratio of optimal integral and fractional covers , 1975, Discret. Math..

[161]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[162]  Guillermo Sapiro,et al.  Generalized Newton-Type Methods for Energy Formulations in Image Processing , 2009, SIAM J. Imaging Sci..

[163]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[164]  Thomas S. Huang,et al.  Modeling, Analysis, and Visualization of Left Ventricle Shape and Motion by Hierarchical Decomposition , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[165]  Nicholas Ayache,et al.  A scheme for automatically building three-dimensional morphometric anatomical atlases: application to a skull atlas , 1998, Medical Image Anal..

[166]  Nicholas Ayache,et al.  Fast segmentation, tracking, and analysis of deformable objects , 1993, 1993 (4th) International Conference on Computer Vision.

[167]  Michael Elad,et al.  Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization , 2007 .

[168]  Adrian S. Lewis,et al.  Alternating Projections on Manifolds , 2008, Math. Oper. Res..

[169]  Daniel Cremers,et al.  Dynamical statistical shape priors for level set-based tracking , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[170]  Demetri Terzopoulos,et al.  Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..

[171]  Max A. Viergever,et al.  Image registration by maximization of combined mutual information and gradient information , 2000, IEEE Transactions on Medical Imaging.

[172]  W. Eric L. Grimson,et al.  Using the logarithm of odds to define a vector space on probabilistic atlases , 2007, Medical Image Anal..

[173]  William T. Freeman,et al.  Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[174]  Gary K. L. Tam,et al.  Computing 3D Mesh Correspondence for Aortic Root Shape Modelling , 2015, MIUA.

[175]  Bo Yang,et al.  A Quasi-Spherical Triangle-Based Approach for Efficient 3-D Soft-Tissue Motion Tracking , 2013, IEEE/ASME Transactions on Mechatronics.

[176]  Gene H. Golub,et al.  Convergence of a Two-Stage Richardson Iterative Procedure for Solving Systems of Linear Equations , 2017 .

[177]  Xianghua Xie,et al.  RAGS: region-aided geometric snake , 2004, IEEE Transactions on Image Processing.

[178]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[179]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[180]  L. Landweber An iteration formula for Fredholm integral equations of the first kind , 1951 .

[181]  Timothy F. Cootes,et al.  Use of active shape models for locating structures in medical images , 1994, Image Vis. Comput..

[182]  Guy Marchal,et al.  Automated Multimodality Medical Images Registration using Information Theory , 1995 .

[183]  Guy Marchal,et al.  Multi-modality image registration by maximization of mutual information , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[184]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[185]  Max W. K. Law,et al.  A Deformable Surface Model for Vascular Segmentation , 2009, MICCAI.

[186]  Ben Taskar,et al.  Learning structured prediction models: a large margin approach , 2005, ICML.

[187]  Leo Grady,et al.  Computing Exact Discrete Minimal Surfaces: Extending and Solving the Shortest Path Problem in 3D with Application to Segmentation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[188]  Timothy F. Cootes,et al.  Training Models of Shape from Sets of Examples , 1992, BMVC.

[189]  Anthony J. Yezzi,et al.  Sobolev Active Contours , 2005, International Journal of Computer Vision.

[190]  Xiao Han,et al.  Automatic Segmentation of Parotids in Head and Neck CT Images using Multi-atlas Fusion , 2010 .

[191]  A. Young,et al.  Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization--a model-based approach. , 1992, Radiology.

[192]  Ezio Malis An efficient unified approach to direct visual tracking of rigid and deformable surfaces , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[193]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[194]  Manuel G. Penedo,et al.  Genetic approaches for topological active nets optimization , 2009, Pattern Recognit..

[195]  O. Axelsson Iterative solution methods , 1995 .

[196]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[197]  Colin Studholme,et al.  An overlap invariant entropy measure of 3D medical image alignment , 1999, Pattern Recognit..

[198]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[199]  Michael Unser,et al.  A Fast Thresholded Landweber Algorithm for Wavelet-Regularized Multidimensional Deconvolution , 2008, IEEE Transactions on Image Processing.

[200]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[201]  Daniel Rueckert,et al.  Analysis of 3-D myocardial motion in tagged MR images using nonrigid image registration , 2004, IEEE Transactions on Medical Imaging.

[202]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[203]  Hervé Delingette,et al.  General Object Reconstruction Based on Simplex Meshes , 1999, International Journal of Computer Vision.

[204]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[205]  Gareth Funka-Lea,et al.  Multi-label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials , 2004, ECCV Workshops CVAMIA and MMBIA.

[206]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[207]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[208]  Stephen T. Barnard,et al.  Stochastic stereo matching over scale , 1989, International Journal of Computer Vision.

[209]  Kostas Delibasis,et al.  Designing Fourier Descriptor-Based Geometric Models for Object Interpretation in Medical Images Using Genetic Algorithms , 1997, Comput. Vis. Image Underst..

[210]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[211]  Baba C. Vemuri,et al.  Hybrid Geometric Active Models for Shape Recovery in Medical Images , 1999, IPMI.

[212]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[213]  J. E. Rooda,et al.  An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers , 2006 .

[214]  Nicholas Ayache,et al.  Frequency-Based Nonrigid Motion Analysis: Application to Four Dimensional Medical Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[215]  K. Hanson,et al.  Three dimensional reconstructions from low-count SPECT data using deformable models , 1997, 1997 IEEE Nuclear Science Symposium Conference Record.

[216]  Joseph Naor,et al.  Approximation algorithms for the metric labeling problem via a new linear programming formulation , 2001, SODA '01.

[217]  Jinah Park,et al.  Deformable models with parameter functions for cardiac motion analysis from tagged MRI data , 1996, IEEE Trans. Medical Imaging.

[218]  M. Padberg,et al.  Linear Optimization and Extensions: Problems and Solutions , 2001 .

[219]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[220]  Olivier D. Faugeras,et al.  Co-dimension 2 Geodesic Active Contours for MRA Segmentation , 1999, IPMI.

[221]  Masao Fukushima,et al.  Application of the alternating direction method of multipliers to separable convex programming problems , 1992, Comput. Optim. Appl..

[222]  Xianghua Xie,et al.  An Overview on Interactive Medical Image Segmentation , 2013 .

[223]  L. Vese,et al.  An efficient variational multiphase motion for the Mumford-Shah segmentation model , 2000, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154).

[224]  Y. Chen,et al.  Image registration via level-set motion: Applications to atlas-based segmentation , 2003, Medical Image Anal..

[225]  H. Trussell,et al.  The Landweber iteration and projection onto convex sets , 1985, IEEE Trans. Acoust. Speech Signal Process..

[226]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[227]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[228]  Surendra Ranganath,et al.  Three-dimensional elastic matching of volumes , 1994, IEEE Trans. Image Process..

[229]  Rachid Deriche,et al.  Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach , 2000, ECCV.

[230]  Akshay K. Singh,et al.  Deformable models in medical image analysis , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[231]  Paul Suetens,et al.  Medical image registration using mutual information , 2003, Proc. IEEE.

[232]  Xavier Bresson,et al.  A Variational Model for Object Segmentation Using Boundary Information and Shape Prior Driven by the Mumford-Shah Functional , 2006, International Journal of Computer Vision.

[233]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[234]  Demetri Terzopoulos,et al.  Topology adaptive deformable surfaces for medical image volume segmentation , 1999, IEEE Transactions on Medical Imaging.

[235]  Alan C. Evans,et al.  Multiple surface identification and matching in magnetic resonance images , 1994, Other Conferences.

[236]  Daniel Rueckert,et al.  Automatic anatomical brain MRI segmentation combining label propagation and decision fusion , 2006, NeuroImage.

[237]  Xianghua Xie,et al.  Active Contouring Based on Gradient Vector Interaction and Constrained Level Set Diffusion , 2010, IEEE Transactions on Image Processing.

[238]  Xugang Ye,et al.  A Note on the Connection Between the Primal-Dual and the A* Algorithm , 2010, Int. J. Oper. Res. Inf. Syst..

[239]  Bronwyn H Hall,et al.  Estimation and Inference in Nonlinear Structural Models , 1974 .

[240]  Andrew V. Knyazev,et al.  Steepest Descent and Conjugate Gradient Methods with Variable Preconditioning , 2007, SIAM J. Matrix Anal. Appl..

[241]  Demetri Terzopoulos,et al.  A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. , 1995, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[242]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[243]  P. Wolfe A duality theorem for non-linear programming , 1961 .

[244]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[245]  Petia Radeva,et al.  Curvature Vector Flow to Assure Convergent Deformable Models for Shape Modelling , 2003, EMMCVPR.

[246]  M. Hanke,et al.  A convergence analysis of the Landweber iteration for nonlinear ill-posed problems , 1995 .

[247]  Xianghua Xie,et al.  Automatic IVUS media-adventitia border extraction using double interface graph cut segmentation , 2011, 2011 18th IEEE International Conference on Image Processing.

[248]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[249]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[250]  Albert C. S. Chung,et al.  Non-rigid image registration by using graph-cuts with mutual information , 2010, 2010 IEEE International Conference on Image Processing.

[251]  Terrance E. Boult,et al.  Global models with parametric offsets as applied to cardiac motion recovery , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[252]  Anthony J. Yezzi,et al.  A Fully Global Approach to Image Segmentation via Coupled Curve Evolution Equations , 2002, J. Vis. Commun. Image Represent..

[253]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[254]  Ghassan Hamarneh,et al.  Optimal Weights for Convex Functionals in Medical Image Segmentation , 2009, ISVC.

[255]  Gurmeet Singh,et al.  MRF's forMRI's: Bayesian Reconstruction of MR Images via Graph Cuts , 2006, CVPR.

[256]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[257]  A. M. Geoffrion Duality in Nonlinear Programming: A Simplified Applications-Oriented Development , 1971 .

[258]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[259]  Lucia Ballerini Genetic snakes for medical image segmentation , 1998, Optics & Photonics.

[260]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[261]  K. T. Block,et al.  Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint , 2007, Magnetic resonance in medicine.

[262]  Vladimir Kolmogorov,et al.  Comparison of Energy Minimization Algorithms for Highly Connected Graphs , 2006, ECCV.

[263]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[264]  Mubarak Shah,et al.  A Fast algorithm for active contours and curvature estimation , 1992, CVGIP Image Underst..

[265]  James S. Duncan,et al.  Non-Rigid Motion Models for Tracking the Left Ventricular Wall , 1991, IPMI.

[266]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[267]  Xianghua Xie,et al.  Minimum S-Excess Graph for Segmenting and Tracking Multiple Borders with HMM , 2015, MICCAI.

[268]  Alistair A. Young,et al.  Semi-automatic tracking of myocardial motion in MR tagged images , 1995, IEEE Trans. Medical Imaging.

[269]  Shan Zhao,et al.  Minimal molecular surfaces and their applications , 2008, J. Comput. Chem..

[270]  R. Howard,et al.  Local convergence analysis of a grouped variable version of coordinate descent , 1987 .

[271]  Saeid Nahavandi,et al.  Locally Sparsified Compressive Sensing for Improved MR Image Quality , 2013, 2013 IEEE International Conference on Systems, Man, and Cybernetics.

[272]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields , 2006, ECCV.

[273]  Erik B. Bajalinov,et al.  Linear-Fractional Programming Theory, Methods, Applications and Software , 2013 .

[274]  Xavier Bresson,et al.  Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction , 2010, J. Sci. Comput..

[275]  Xiao Han,et al.  Automatic Segmentation of Head and Neck CT Images by GPU-Accelerated Multi-atlas Fusion , 2009, The MIDAS Journal.

[276]  M. Bhattacharya,et al.  Multi resolution medical image registration using maximization of mutual information & optimization by genetic algorithm , 2007, 2007 IEEE Nuclear Science Symposium Conference Record.

[277]  Leo Grady,et al.  A multilevel banded graph cuts method for fast image segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[278]  Hugues Talbot,et al.  Globally minimal surfaces by continuous maximal flows , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[279]  D. Griffel Linear programming 2: Theory and extensions , by G. B. Dantzig and M. N. Thapa. Pp. 408. £50.00. 2003 ISBN 0 387 00834 9 (Springer). , 2004, The Mathematical Gazette.

[280]  Guillermo Sapiro,et al.  Affine invariant scale-space , 1993, International Journal of Computer Vision.

[281]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[282]  Meritxell Bach Cuadra,et al.  Multi-Atlas based Segmentation of Head and Neck CT Images using Active Contour Framework , 2010 .

[283]  John W. Fisher,et al.  Nonparametric methods for image segmentation using information theory and curve evolution , 2002, Proceedings. International Conference on Image Processing.

[284]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[285]  Lawrence H. Staib,et al.  Boundary finding with correspondence using statistical shape models , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[286]  Jinah Park,et al.  Analysis of left ventricular wall motion based on volumetric deformable models and MRI-SPAMM , 1996, Medical Image Anal..

[287]  Václav Hlavác,et al.  Efficient MRF Deformation Model for Non-Rigid Image Matching , 2007, CVPR.

[288]  Michèle Sebag,et al.  Adaptive coordinate descent , 2011, GECCO '11.

[289]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[290]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[291]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[292]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[293]  Nicholas Ayache,et al.  Locally affine registration of free-form surfaces , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[294]  Éva Tardos,et al.  Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[295]  Franco Giannessi,et al.  On the theory of Lagrangian duality , 2006, Optim. Lett..

[296]  Yoonsuck Choe,et al.  Cell tracking and segmentation in electron microscopy images using graph cuts , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[297]  Jacques-Olivier Lachaud,et al.  Deformable model with a complexity independent from image resolution , 2005, Comput. Vis. Image Underst..

[298]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[299]  Jeffrey Tsao,et al.  Interpolation artifacts in multimodality image registration based on maximization of mutual information , 2003, IEEE Transactions on Medical Imaging.

[300]  Norman I. Badler,et al.  Multi-Level Shape Representation Using Global Deformations and Locally Adaptive Finite Elements , 1997, International Journal of Computer Vision.

[301]  Tony F. Chan,et al.  Some Recent Developments in Variational Image Segmentation , 2007 .

[302]  Richard H. Byrd,et al.  A Theoretical and Experimental Study of the Symmetric Rank-One Update , 1993, SIAM J. Optim..

[303]  Alistair A. Young,et al.  Tracking and finite element analysis of stripe deformation in magnetic resonance tagging , 1995, IEEE Trans. Medical Imaging.

[304]  Nikos Komodakis,et al.  Approximate Labeling via Graph Cuts Based on Linear Programming , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[305]  Katsushi Ikeuchi,et al.  Shape representation and image segmentation using deformable surfaces , 1992, Image Vis. Comput..

[306]  R. Mathar,et al.  A cyclic projection algorithm via duality , 1989 .

[307]  Ghassan Hamarneh,et al.  Adaptive Regularization for Image Segmentation Using Local Image Curvature Cues , 2010, ECCV.

[308]  Naonori Ueda,et al.  Tracking Moving Contours Using Energy-Minimizing Elastic Contour Models , 1992, ECCV.

[309]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[310]  Demetri Terzopoulos,et al.  T-snakes: Topology adaptive snakes , 2000, Medical Image Anal..

[311]  Derek Hoiem,et al.  Learning CRFs Using Graph Cuts , 2008, ECCV.

[312]  Christian Barillot,et al.  Robust 3D Segmentation of Anatomical Structures with Level Sets , 2000, MICCAI.

[313]  Linda G Shapiro,et al.  Head and neck lymph node region delineation with image registration , 2010, Biomedical engineering online.

[314]  Jussi Tohka,et al.  Global optimization of deformable surface meshes based on genetic algorithms , 2001, Proceedings 11th International Conference on Image Analysis and Processing.

[315]  Laurent D. Cohen,et al.  A Parametric Deformable Model to Fit Unstructured 3D Data , 1998, Comput. Vis. Image Underst..

[316]  Shiqian Ma,et al.  Accelerated Linearized Bregman Method , 2011, J. Sci. Comput..

[317]  Jean-Pierre Aubin,et al.  Estimates of the Duality Gap in Nonconvex Optimization , 1976, Math. Oper. Res..

[318]  Vsevolod I. Ivanov,et al.  Duality in nonlinear programming , 2013, Optim. Lett..

[319]  R. Kimmel,et al.  Minimal surfaces: a geometric three dimensional segmentation approach , 1997 .

[320]  Nikos Paragios,et al.  Gradient vector flow fast geometric active contours , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[321]  Antonio Benassi,et al.  Automatic time sequence alignment in contrast enhanced MRI by maximization of mutual information , 2001, 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[322]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[323]  Tony F. Chan,et al.  Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection , 2006, International Journal of Computer Vision.

[324]  Anthony J. Yezzi,et al.  A geometric snake model for segmentation of medical imagery , 1997, IEEE Transactions on Medical Imaging.

[325]  Olga Veksler Graph Cut Based Optimization for MRFs with Truncated Convex Priors , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[326]  Gautam Mitra,et al.  Simplex algorithms , 1996 .

[327]  Stephen J. Wright,et al.  Duality-based algorithms for total-variation-regularized image restoration , 2010, Comput. Optim. Appl..

[328]  Leo Grady,et al.  A Seeded Image Segmentation Framework Unifying Graph Cuts And Random Walker Which Yields A New Algorithm , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[329]  Richard G. Baraniuk,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[330]  Yoonsuck Choe,et al.  3D volume extraction of densely packed cells in EM data stack by forward and backward graph cuts , 2009, 2009 IEEE Symposium on Computational Intelligence for Multimedia Signal and Vision Processing.

[331]  Albert C. S. Chung,et al.  Non-rigid Image Registration Using Graph-cuts , 2007, MICCAI.

[332]  Ghassan Hamarneh,et al.  Vessel Crawlers: 3D Physically-based Deformable Organisms for Vasculature Segmentation and Analysis , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[333]  J. Neumann On Rings of Operators. Reduction Theory , 1949 .

[334]  Xiaoxu Wang,et al.  Automated 3D Motion Tracking Using Gabor Filter Bank, Robust Point Matching, and Deformable Models , 2010, IEEE Transactions on Medical Imaging.

[335]  John W. Fisher,et al.  Submitted to Ieee Transactions on Image Processing a Nonparametric Statistical Method for Image Segmentation Using Information Theory and Curve Evolution , 2022 .

[336]  Timothy F. Cootes,et al.  The Use of Active Shape Models for Locating Structures in Medical Images , 1993, IPMI.

[337]  Rachid Deriche,et al.  Implicit Active Shape Models for 3D Segmentation in MR Imaging , 2004, MICCAI.

[338]  Xianghua Xie,et al.  Implicit Active Model using Radial Basis Function Interpolated Level Sets , 2007, BMVC.

[339]  Nikos Paragios,et al.  Prior Knowledge, Level Set Representations & Visual Grouping , 2008, International Journal of Computer Vision.

[340]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[341]  Nicholas Ayache,et al.  Automatic Retrieval of Anatomical Structures in 3D Medical Images , 1995, CVRMed.

[342]  Daniel P. Huttenlocher,et al.  Efficient Belief Propagation for Early Vision , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[343]  Baba C. Vemuri,et al.  Multiresolution stochastic hybrid shape models with fractal priors , 1994, TOGS.

[344]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[345]  Lawrence H. Staib,et al.  An integrated approach to boundary finding in medical images , 1994, Proceedings of IEEE Workshop on Biomedical Image Analysis.

[346]  David R. Gilland,et al.  Simultaneous motion estimation and image reconstruction from gated data , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[347]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[348]  Nicholas Ayache,et al.  Smoothing and matching of 3-d space curves , 2005, International Journal of Computer Vision.

[349]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[350]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[351]  Demetri Terzopoulos,et al.  Topologically adaptable snakes , 1995, Proceedings of IEEE International Conference on Computer Vision.

[352]  Nicholas Ayache,et al.  Non-Rigid Motion Analysis in Medical Images: a Physically Based Approach , 1993, IPMI.

[353]  M. Zibaeifard,et al.  An adaptive simulated annealing scheme for multi-modality medical image registration by maximization of mutual information , 2006, 2006 8th international Conference on Signal Processing.

[354]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[355]  Nicholas Ayache,et al.  Tracking Points on Deformable Objects Using Curvature Information , 1992, ECCV.

[356]  P. Tseng,et al.  On the convergence of the coordinate descent method for convex differentiable minimization , 1992 .

[357]  G. Marchal,et al.  Multi-modal volume registration by maximization of mutual information , 1997 .

[358]  Vladimir Kolmogorov,et al.  Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[359]  Theo van Walsum,et al.  Hyperthermia critical tissues automatic segmentation of head and neck CT images using atlas registration and graph cuts , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[360]  Ron Kikinis,et al.  Adaptive, template moderated, spatially varying statistical classification , 2000, Medical Image Anal..

[361]  G. Wei,et al.  High-order fractional partial differential equation transform for molecular surface construction , 2012 .

[362]  Ron Kimmel,et al.  Fast Edge Integration , 2003 .

[363]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[364]  Michael Elad,et al.  Why Simple Shrinkage Is Still Relevant for Redundant Representations? , 2006, IEEE Transactions on Information Theory.

[365]  David J. Evans,et al.  Volumetric segmentation of brain images using parallel genetic algorithms , 2002, IEEE Transactions on Medical Imaging.

[366]  Michael W. Vannier,et al.  Mathematical modeling of the heart using magnetic resonance imaging , 1992, IEEE Trans. Medical Imaging.

[367]  Xianghua Xie,et al.  Shape Prior Model for Media-Adventitia Border Segmentation in IVUS Using Graph Cut , 2012, MCV.

[368]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[369]  J. Rousseau,et al.  Multimodal matching by maximisation of mutual information and optical flow technique , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[370]  Edgar Arce Santana,et al.  Image registration using Markov random coefficient and geometric transformation fields , 2009, Pattern Recognit..

[371]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[372]  Leo Grady,et al.  Minimal Surfaces Extend Shortest Path Segmentation Methods to 3D , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[373]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[374]  Xianghua Xie,et al.  Geometrically Induced Force Interaction for Three-Dimensional Deformable Models , 2011, IEEE Transactions on Image Processing.

[375]  Xianghua Xie,et al.  Graph Based Lymphatic Vessel Wall Localisation and Tracking , 2015, GbRPR.

[376]  William A. Barrett,et al.  Interactive Segmentation with Intelligent Scissors , 1998, Graph. Model. Image Process..

[377]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[378]  James S. Duncan,et al.  Measurement of non-rigid motion using contour shape descriptors , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[379]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[380]  Hiroshi Ishikawa Higher-order gradient descent by fusion-move graph cut , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[381]  Tibor Illés,et al.  The finite criss-cross method for hyperbolic programming , 1996, Eur. J. Oper. Res..

[382]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[383]  Gene H. Golub,et al.  Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration , 1999, SIAM J. Sci. Comput..

[384]  John E. Beasley Advances in Linear and Integer Programming , 1996 .

[385]  D. Lalush,et al.  Block-iterative techniques for fast 4D reconstruction using a priori motion models in gated cardiac SPECT. , 1998, Physics in medicine and biology.

[386]  Colin Studholme,et al.  Automated 3-D registration of MR and CT images of the head , 1996, Medical Image Anal..

[387]  Xiao Han,et al.  Atlas-Based Auto-segmentation of Head and Neck CT Images , 2008, MICCAI.

[388]  Daniel Cremers,et al.  Shape priors in variational image segmentation: Convexity, Lipschitz continuity and globally optimal solutions , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[389]  Xianghua Xie,et al.  MAC: Magnetostatic Active Contour Model , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[390]  Junaed Sattar Snakes , Shapes and Gradient Vector Flow , 2022 .

[391]  Lorenzo Rosasco,et al.  Solving Structured Sparsity Regularization with Proximal Methods , 2010, ECML/PKDD.

[392]  Robert G. Bland,et al.  New Finite Pivoting Rules for the Simplex Method , 1977, Math. Oper. Res..

[393]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[394]  Ray L. Somorjai,et al.  A fast, simple active contour algorithm for biomedical images , 1996, Pattern Recognit. Lett..

[395]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[396]  Demetri Terzopoulos,et al.  United Snakes , 1999, Medical Image Anal..

[397]  Ghassan Hamarneh,et al.  Efficient interactive 3D Livewire segmentation of complex objects with arbitrary topology , 2008, Comput. Medical Imaging Graph..

[398]  Jerry L. Prince,et al.  Generalized gradient vector flow external forces for active contours , 1998, Signal Process..

[399]  George B. Dantzig,et al.  Linear Programming 1: Introduction , 1997 .

[400]  Christopher J. Taylor,et al.  Model-based image interpretation using genetic algorithms , 1992, Image Vis. Comput..

[401]  Klaus Diepold,et al.  Sparse stereo matching using belief propagation , 2008, 2008 15th IEEE International Conference on Image Processing.

[402]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[403]  Xianghua Xie,et al.  Geometric Potential Force for the Deformable Model , 2009, BMVC.

[404]  Mehran Moshfeghi,et al.  Elastic matching of multimodality medical images , 1991, CVGIP Graph. Model. Image Process..

[405]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[406]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[407]  Michael H. F. Wilkinson,et al.  CPM: a deformable model for shape recovery and segmentation based on charged particles , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[408]  Valerie Duay,et al.  Segmentation of Head and Neck Lymph Node Regions for Radiotherapy Planning Using Active Contour-Based Atlas Registration , 2009, IEEE Journal of Selected Topics in Signal Processing.

[409]  Dimitris N. Metaxas,et al.  Dynamic 3D models with local and global deformations: deformable superquadrics , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[410]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[411]  Anthony J. Yezzi,et al.  A statistical approach to snakes for bimodal and trimodal imagery , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[412]  Richard Szeliski,et al.  Recovering the Position and Orientation of Free-Form Objects from Image Contours Using 3D Distance Maps , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[413]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[414]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[415]  Dmitry B. Goldgof,et al.  Point correspondence recovery in non-rigid motion , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[416]  Tamás Terlaky,et al.  A computational view of interior point methods , 1996 .

[417]  Tamás Terlaky,et al.  Criss-cross methods: A fresh view on pivot algorithms , 1997, Math. Program..

[418]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[419]  Ghassan Hamarneh,et al.  Convex multi-region probabilistic segmentation with shape prior in the isometric log-ratio transformation space , 2011, 2011 International Conference on Computer Vision.

[420]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[421]  Nassir Navab,et al.  Dense image registration through MRFs and efficient linear programming , 2008, Medical Image Anal..

[422]  Olvi L. Mangasarian,et al.  Second- and higher-order duality in nonlinear programming☆ , 1975 .