Computing delay resistant railway timetables

In the past, much research has been dedicated to compute optimum railway timetables. A typical objective has been the minimization of passenger waiting times. But only the planned nominal waiting times have been addressed, whereas delays as they occur in daily operations have been neglected. Delays have been rather treated mainly in an online context and solved as a separate optimization problem, called delay management. We provide the first computational study which aims at computing delay resistant periodic timetables. In particular we assess the delay resistance of a timetable by evaluating it subject to several delay scenarios to which optimum delay management will be applied. We arrive at computing delay resistant timetables by selecting a new objective function which we design to be somehow in the middle of the traditional simple timetabling objective and the sophisticated delay management objective. This is a slight extension of the concept of ''light robustness'' (LR) as it has been proposed by Fischetti and Monaci [2006. Robust optimization through branch-and-price. In: Proceedings of AIRO]. Moreover, in our application we are able to provide accurate interpretations for the ingredients of LR. We apply this new technique to real-world data of a part of the German railway network of Deutsche Bahn AG. Our computational results suggest that a significant decrease of passenger delays can be obtained at a relatively small price of robustness, i.e. by increasing the nominal travel times of the passengers.

[1]  Peter Widmayer,et al.  Railway Delay Management: Exploring Its Algorithmic Complexity , 2004, SWAT.

[2]  StillerSebastian,et al.  Computing delay resistant railway timetables , 2010 .

[3]  Rolf H. Möhring,et al.  The Modeling Power of the Periodic Event Scheduling Problem: Railway Timetables - and Beyond , 2004, ATMOS.

[4]  Christian Liebchen A Cut-Based Heuristic to Produce Almost Feasible Periodic Railway Timetables , 2005, WEA.

[5]  Michael R. Bussieck,et al.  A fast algorithm for near cost optimal line plans , 2004, Math. Methods Oper. Res..

[6]  Rolf H. Möhring,et al.  Conflict-free Real-time AGV Routing , 2004, OR.

[7]  Ekkehard Köhler,et al.  Benchmarks for Strictly Fundamental Cycle Bases , 2007, WEA.

[8]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[9]  Leena Suhl,et al.  Requirement for, and Design of, an Operations Control System for Railways , 1999 .

[10]  Michael Kolonko,et al.  Analysing stability and investments in railway networks using advanced evolutionary algorithms , 2004 .

[11]  Nicole Megow,et al.  The Online Target Date Assignment Problem , 2005, WAOA.

[12]  Romeo Rizzi,et al.  REDUCING THE OPTIMALITY GAP OF STRICTLY FUNDAMENTAL CYCLE BASES IN PLANAR GRIDS , 2006 .

[13]  Christian Liebchen Fahrplanoptimierung im Personenverkehr : muss es immer ITF sein? , 2005 .

[14]  Rolf H. Möhring,et al.  Partitioning Graphs to Speed Up Dijkstra's Algorithm , 2005, WEA.

[15]  Jarkko Niittymäki,et al.  Mathematical methods on optimization in transportation systems , 2001 .

[16]  Mathematik Und,et al.  A New Bound on the Length of Minimum Cycle Bases , 2006 .

[17]  Nicole Megow,et al.  Stochastic Online Scheduling on Parallel Machines , 2004, WAOA.

[18]  A. Barrett Network Flows and Monotropic Optimization. , 1984 .

[19]  B. Schutter,et al.  On max-algebraic models for transportation networks , 1998 .

[20]  Ma Preprint 031-2004: A Greedy Approach to Compute a Minimum Cycle Bases of a Directed Graph , 2005 .

[21]  Anita Schöbel,et al.  DisKon - Disposition und Konfliktlösungsmanagement für die beste Bahn , 2005 .

[22]  Anita Schöbel,et al.  A Model for the Delay Management Problem based on Mixed-Integer-Programming , 2001, ATMOS.

[23]  Uwe T. Zimmermann,et al.  Shunting Minimal Rail Car Allocation , 2005, Comput. Optim. Appl..

[24]  Christian Liebchen,et al.  Integral cycle bases for cyclic timetabling , 2009, Discret. Optim..

[25]  Alexander Hall,et al.  Flows over Time: Towards a More Realistic and Computationally Tractable Model , 2005, ALENEX/ANALCO.

[26]  Thomas Erlebach,et al.  Length-bounded cuts and flows , 2006, TALG.

[27]  Anita Schöbel,et al.  Capacity constraints in delay management , 2009, Public Transp..

[28]  Romeo Rizzi,et al.  A New Bound on the Length of Minimum Cycle Bases , 2007 .

[29]  Nicole Megow,et al.  Approximation Results for Preemptive Stochastic Online Scheduling , 2006 .

[30]  Leon Peeters,et al.  The Computational Complexity of Delay Management , 2005, WG.

[31]  Martin Desrochers,et al.  Computer-Aided Transit Scheduling , 1992 .

[32]  Bernd Heidergott,et al.  Towards a (Max,+) Control Theory for Public Transportation Networks , 2001, Discret. Event Dyn. Syst..

[33]  Wolfgang Domschke,et al.  Schedule synchronization for public transit networks , 1989 .

[34]  Romeo Rizzi,et al.  Classes of cycle bases , 2007, Discret. Appl. Math..

[35]  Ulrich Derigs,et al.  Operations Research Proceedings 1996 , 1997 .

[36]  Berit Johannes,et al.  On the complexity of scheduling unit-time jobs with OR-precedence constraints , 2005, Oper. Res. Lett..

[37]  Sebastian Stiller,et al.  The Price of Anarchy of a Network Creation Game with Exponential Payoff , 2008, SAGT.

[38]  Anita Schöbel,et al.  Integer Programming Approaches for Solving the Delay Management Problem , 2004, ATMOS.

[39]  Mathematik Und Information on MIPLIB's timetab-instances , 2003 .

[40]  Stefan Voß,et al.  Practical Experiences in Schedule Synchronization , 1995 .

[41]  Anita Schöbel,et al.  To Wait or Not to Wait? The Bicriteria Delay Management Problem in Public Transportation , 2007, Transp. Sci..

[42]  Christian Liebchen,et al.  A greedy approach to compute a minimum cycle basis of a directed graph , 2005, Inf. Process. Lett..

[43]  Sándor P. Fekete,et al.  Minimizing the Stabbing Number of Matchings, Trees, and Triangulations , 2003, SODA '04.

[44]  Walter Ukovich,et al.  A Mathematical Model for Periodic Scheduling Problems , 1989, SIAM J. Discret. Math..

[45]  Christian Liebchen,et al.  Performance of Algorithms for Periodic Timetable Optimization , 2008 .

[46]  Leo G. Kroon,et al.  A Variable Trip Time Model for Cyclic Railway Timetabling , 2003, Transp. Sci..

[47]  K. Nachtigall Periodic network optimizationi and fixed interval timetables , 1999 .

[48]  Ronald Koch,et al.  Complexity and approximability of k-splittable flows , 2006, Theor. Comput. Sci..

[49]  Leo G. Kroon,et al.  Cyclic Railway Timetabling: A Stochastic Optimization Approach , 2004, ATMOS.

[50]  Leena Suhl,et al.  Design of Customer-oriented Dispatching Support for Railways , 2001 .

[51]  U. T. Zimmermann,et al.  Train Schedule Optimization in Public Rail Transport , 2003 .

[52]  Ulf Lorenz,et al.  Parallelism for Perturbation Management and Robust Plans , 2005, Euro-Par.

[53]  Romeo Rizzi,et al.  New length bounds for cycle bases , 2007, Inf. Process. Lett..

[54]  Christian Liebchen,et al.  Periodic Timetable Optimization in Public Transport , 2006, OR.

[55]  Nicole Megow,et al.  Models and Algorithms for Stochastic Online Scheduling , 2006, Math. Oper. Res..

[56]  Sebastian Stiller,et al.  Delay resistant timetabling , 2009, Public Transp..

[57]  Michiel A. Odijk,et al.  A CONSTRAINT GENERATION ALGORITHM FOR THE CONSTRUCTION OF PERIODIC RAILWAY TIMETABLES , 1996 .

[58]  Anita Schöbel,et al.  IP-based Techniques for Delay Management with Priority Decisions , 2008, ATMOS.

[59]  Wolf-Dieter Klemt,et al.  Schedule Synchronization for Public Transit Networks , 1988 .

[60]  Nicole Megow,et al.  Scheduling to Minimize Average Completion Time Revisited: Deterministic On-Line Algorithms , 2003, WAOA.

[61]  Peter Widmayer,et al.  Online Delay Management on a Single Train Line , 2004, ATMOS.

[62]  C. Conte,et al.  Identifying dependencies among delays , 2008 .

[63]  Leena Suhl,et al.  Managing and Preventing Delays in Railway Traffic by Simulation and Optimization , 2001 .

[64]  Martine Labbé,et al.  Optimization models for the single delay management problem in public transportation , 2008, Eur. J. Oper. Res..

[65]  Leena Suhl,et al.  Supporting Planning and Operation Time Control in Transportation Systems , 1997 .

[66]  Ma Preprint 761-2002: On Cyclic Timetabling and Cycles in Graphs , 2003 .

[67]  Christian Liebchen,et al.  The First Optimized Railway Timetable in Practice , 2008, Transp. Sci..