Convex duality in optimal investment under illiquidity

We study the problem of optimal investment by embedding it in the general conjugate duality framework of convex analysis. This allows for various extensions to classical models of liquid markets. In particular, we obtain a dual representation for the optimum value function in the presence of portfolio constraints and nonlinear trading costs that are encountered e.g. in modern limit order markets. The optimization problem is parameterized by a sequence of financial claims. Such a parameterization is essential in markets without a numeraire asset when pricing swap contracts and other financial products with multiple payout dates. In the special case of perfectly liquid markets or markets with proportional transaction costs, we recover well-known dual expressions in terms of martingale measures.

[1]  Teemu Pennanen,et al.  Convex Duality in Stochastic Optimization and Mathematical Finance , 2011, Math. Oper. Res..

[2]  Transaction Costs, Shadow Prices, and Connections to Duality , 2012 .

[3]  Miklós Rásonyi,et al.  ON UTILITY MAXIMIZATION IN DISCRETE-TIME FINANCIAL MARKET MODELS , 2005 .

[4]  J. Doob Stochastic processes , 1953 .

[5]  Teemu Pennanen,et al.  Stochastic programs without duality gaps , 2011, Math. Program..

[6]  E. Jouini,et al.  Martingales and Arbitrage in Securities Markets with Transaction Costs , 1995 .

[7]  M. David HARRISON, J. Michael, and KREPS, . Martingales and Arbitrage in Multiperiod Securities Markets, Journal of Economic Theory, , . , 1979 .

[8]  M. Frittelli,et al.  INDIFFERENCE PRICE WITH GENERAL SEMIMARTINGALES , 2009, 0905.4657.

[9]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[10]  T. Pennanen,et al.  Reduced form modeling of limit order markets , 2010, 1006.4517.

[11]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[12]  W. Schachermayer,et al.  Necessary and sufficient conditions in the problem of optimal investment in incomplete markets , 2003 .

[13]  Jakša Cvitanić,et al.  Convex Duality in Constrained Portfolio Optimization , 1992 .

[14]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[15]  Robert C. Dalang,et al.  Equivalent martingale measures and no-arbitrage in stochastic securities market models , 1990 .

[16]  David A. Freedman,et al.  Introduction to Discrete Time , 1983 .

[17]  W. Schachermayer,et al.  The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .

[18]  Teemu Pennanen,et al.  SUPERHEDGING IN ILLIQUID MARKETS , 2008, 0807.2962.

[19]  Gordan Zitkovic,et al.  OPTIMAL INVESTMENT WITH AN UNBOUNDED RANDOM ENDOWMENT AND UTILITY‐BASED PRICING , 2007, 0706.0478.

[20]  Teemu Pennanen,et al.  Arbitrage and deflators in illiquid markets , 2008, Finance Stochastics.

[21]  Teemu Pennanen,et al.  Optimal investment and contingent claim valuation in illiquid markets , 2014, Finance Stochastics.

[22]  Dirk Becherer,et al.  Rational hedging and valuation of integrated risks under constant absolute risk aversion , 2003 .

[23]  J. Leray,et al.  Séminaire sur les équations aux dérivées partielles , 1977 .

[24]  R. Rockafellar 1. Conjugate Duality and Optimization , 1974 .

[25]  Igor Cialenco,et al.  NO‐ARBITRAGE PRICING FOR DIVIDEND‐PAYING SECURITIES IN DISCRETE‐TIME MARKETS WITH TRANSACTION COSTS , 2012, 1205.6254.

[26]  L. Rogers,et al.  MODELING LIQUIDITY EFFECTS IN DISCRETE TIME , 2007 .

[27]  Y. Kabanov,et al.  On the optimal portfolio for the exponential utility maximization: remarks to the six‐author paper , 2002 .

[28]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[29]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[30]  Teemu Pennanen,et al.  Dual representation of superhedging costs in illiquid markets , 2011 .

[31]  Walter Schachermayer,et al.  The Mathematics of Arbitrage , 2006 .

[32]  Paolo Guasoni Risk minimization under transaction costs , 2002, Finance Stochastics.

[33]  Walter Schachermayer,et al.  A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time , 1992 .

[34]  P. Guasoni Optimal investment with transaction costs and without semimartingales , 2002 .

[35]  Clotilde Napp,et al.  The Dalang–Morton–Willinger theorem under cone constraints , 2003 .

[36]  David M. Kreps Arbitrage and equilibrium in economies with infinitely many commodities , 1981 .

[37]  I. Klein,et al.  DUALITY IN OPTIMAL INVESTMENT AND CONSUMPTION PROBLEMS WITH MARKET FRICTIONS , 2007 .

[38]  Transaction Costs and Shadow Prices in Discrete Time , 2013 .

[39]  W. Schachermayer The Fundamental Theorem of Asset Pricing under Proportional Transaction Costs in Finite Discrete Time , 2004 .

[40]  I. Karatzas,et al.  Optimal Consumption from Investment and Random Endowment in Incomplete Semimartingale Markets , 2001, 0706.0051.

[41]  Y. Kabanov,et al.  Markets with transaction costs , 2010 .

[42]  F. Delbaen,et al.  Exponential Hedging and Entropic Penalties , 2002 .

[43]  J. M. Corcuera,et al.  On the Optimal Investment , 2016 .

[44]  Michael A. H. Dempster,et al.  Asset Pricing and Hedging in Financial Markets with Transaction Costs: An Approach Based on the Von Neumann–Gale Model , 2006 .

[45]  Sara Biagini,et al.  A Unified Framework for Utility Maximization Problems: an Orlicz space approach , 2007, 0806.2582.

[46]  Rolf Dach,et al.  Technical Report 2012 , 2013 .

[47]  E. Jouini,et al.  ARBITRAGE IN SECURITIES MARKETS WITH SHORT-SALES CONSTRAINTS , 1995 .

[48]  D. Rokhlin An Extended Version of the Dalang-Morton-Willinger Theorem under Portfolio Constraints , 2005 .