Developing a Stochastic Dynamic Programming Framework for Optical Tweezer-Based Automated Particle Transport Operations

Automated particle transport using optical tweezers requires the use of motion planning to move the particle while avoiding collisions with randomly moving obstacles. This paper describes a stochastic dynamic programming based motion planning framework developed by modifying the discrete version of an infinite-horizon partially observable Markov decision process algorithm. Sample trajectories generated by this algorithm are presented to highlight effectiveness in crowded scenes and flexibility. The algorithm is tested using silica beads in a holographic tweezer set-up and data obtained from the physical experiments are reported to validate various aspects of the planning simulation framework. This framework is then used to evaluate the performance of the algorithm under a variety of operating conditions.

[1]  M W Berns,et al.  Parametric study of the forces on microspheres held by optical tweezers. , 1994, Applied optics.

[2]  Dinesh Manocha,et al.  Real-time Path Planning for Virtual Agents in Dynamic Environments , 2007, VR.

[3]  Michael W. Berns,et al.  Radiation trapping forces on microspheres with optical tweezers , 1993 .

[4]  Steven M. LaValle,et al.  An Objective-Based Framework for Motion Planning under Sensing and Control Uncertainties , 1998, Int. J. Robotics Res..

[5]  Satyandra K. Gupta,et al.  A Flexible System Framework for a Nanoassembly Cell Using Optical Tweezers , 2006 .

[6]  A. Ashkin,et al.  Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Biophysical journal.

[7]  Satyandra K. Gupta,et al.  Algorithms for On-Line Monitoring of Micro Spheres in an Optical Tweezers-Based Assembly Cell , 2007, J. Comput. Inf. Sci. Eng..

[8]  Manuela M. Veloso,et al.  Real-time randomized path planning for robot navigation , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  A J Pons,et al.  Feedback control of unstable cellular solidification fronts. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Kostas E. Bekris,et al.  Greedy but Safe Replanning under Kinodynamic Constraints , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[11]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[12]  Ellips Masehian,et al.  Classic and Heuristic Approaches in Robot Motion Planning A Chronological Review , 2007 .

[13]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[14]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[15]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[16]  A. Ashkin,et al.  History of optical trapping and manipulation of small-neutral particle, atoms, and molecules , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  Satyandra K. Gupta,et al.  Generating Simplified Trapping Probability Models From Simulation of Optical Tweezers System , 2009, J. Comput. Inf. Sci. Eng..

[18]  Nicholas Roy,et al.  The Belief Roadmap: Efficient Planning in Linear POMDPs by Factoring the Covariance , 2007, ISRR.

[19]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[20]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[21]  G. Swaminathan Robot Motion Planning , 2006 .

[22]  Steven M. LaValle,et al.  Robot Motion Planning: A Game-Theoretic Foundation , 2000, Algorithmica.

[23]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[24]  James J. Kuffner,et al.  Multipartite RRTs for Rapid Replanning in Dynamic Environments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[25]  Gregory S. Chirikjian,et al.  Steering flexible needles under Markov motion uncertainty , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.