Spontaneous Retinal Activity Mediates Development of Ocular Dominance Columns and Binocular Receptive Fields in V1

[1]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[2]  D H Hubel,et al.  Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. , 1974, Brain research.

[3]  P. Rakic Prenatal genesis of connections subserving ocular dominance in the rhesus monkey , 1976, Nature.

[4]  S. Levay,et al.  Ocular dominance columns and their development in layer IV of the cat's visual cortex: A quantitative study , 1978, The Journal of comparative neurology.

[5]  R. Guillery,et al.  The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development , 1981, The Journal of comparative neurology.

[6]  R. Guillery,et al.  The organization of the lateral geniculate nucleus and of the geniculocortical pathway that develops without retinal afferents. , 1985, Brain research.

[7]  S. Levay,et al.  The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  M. Stryker,et al.  Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  M P Stryker,et al.  Segregation of ON and OFF afferents to ferret visual cortex. , 1988, Journal of neurophysiology.

[10]  M. Law,et al.  Organization of primary visual cortex (area 17) in the ferret , 1988, The Journal of comparative neurology.

[11]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[12]  Carla J. Shatz,et al.  Involvement of subplate neurons in the formation of ocular dominance columns. , 1992, Science.

[13]  C. Shatz,et al.  Transient period of correlated bursting activity during development of the mammalian retina , 1993, Neuron.

[14]  A. Antonini,et al.  Ultrastructural Evidence for Synaptic Interactions between Thalamocortical Axons and Subplate Neurons , 1994, The European journal of neuroscience.

[15]  S Löwel,et al.  Ocular dominance column development: strabismus changes the spacing of adjacent columns in cat visual cortex. , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  R. Shapley,et al.  The use of m-sequences in the analysis of visual neurons: Linear receptive field properties , 1997, Visual Neuroscience.

[17]  M. Stryker,et al.  The role of visual experience in the development of columns in cat visual cortex. , 1998, Science.

[18]  C. Shatz,et al.  Competition in retinogeniculate patterning driven by spontaneous activity. , 1998, Science.

[19]  Naoum P. Issa,et al.  The Critical Period for Ocular Dominance Plasticity in the Ferret’s Visual Cortex , 1999, The Journal of Neuroscience.

[20]  S. M. Williams,et al.  Maps of Central Visual Space in Ferret V1 and V2 Lack Matching Inputs from the Two Eyes , 1999, The Journal of Neuroscience.

[21]  M. Stryker,et al.  Development and organization of ocular dominance bands in primary visual cortex of the sable ferret , 1999, The Journal of comparative neurology.

[22]  M. Weliky,et al.  Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. , 1999, Science.

[23]  L. C. Katz,et al.  Development of ocular dominance columns in the absence of retinal input , 1999, Nature Neuroscience.

[24]  B. Chapman Necessity for afferent activity to maintain eye-specific segregation in ferret lateral geniculate nucleus. , 2000, Science.

[25]  L. C. Katz,et al.  Early development of ocular dominance columns. , 2000, Science.

[26]  C. Chiu,et al.  Spontaneous Activity in Developing Ferret Visual Cortex In Vivo , 2001, The Journal of Neuroscience.

[27]  M P Stryker,et al.  Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age , 2001, The Journal of comparative neurology.

[28]  J P Changeux,et al.  Requirement of the nicotinic acetylcholine receptor β2 subunit for the anatomical and functional development of the visual system , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[30]  M. Feller,et al.  Retinogeniculate Axons Undergo Eye-Specific Segregation in the Absence of Eye-Specific Layers , 2002, The Journal of Neuroscience.

[31]  Andrew D Huberman,et al.  Decoupling Eye-Specific Segregation from Lamination in the Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[32]  D. L. Adams,et al.  Capricious expression of cortical columns in the primate brain , 2003, Nature Neuroscience.

[33]  W. Usrey,et al.  Receptive fields and response properties of neurons in layer 4 of ferret visual cortex. , 2003, Journal of neurophysiology.

[34]  R Clay Reid,et al.  Materials and Methods Som Text Figs. S1 to S7 References Movies S1 to S7 Role of Subplate Neurons in Functional Maturation of Visual Cortical Columns , 2022 .

[35]  Matthew S. Grubb,et al.  Abnormal Functional Organization in the Dorsal Lateral Geniculate Nucleus of Mice Lacking the β2 Subunit of the Nicotinic Acetylcholine Receptor , 2003, Neuron.

[36]  D. O'Leary,et al.  Retinotopic Map Refinement Requires Spontaneous Retinal Waves during a Brief Critical Period of Development , 2003, Neuron.

[37]  Massimo Scanziani,et al.  A precritical period for plasticity in visual cortex , 2005, Current Opinion in Neurobiology.

[38]  D. Copenhagen,et al.  Development of Precise Maps in Visual Cortex Requires Patterned Spontaneous Activity in the Retina , 2005, Neuron.

[39]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[40]  John G Flanagan,et al.  Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping , 2005, Nature Neuroscience.

[41]  M. Stryker,et al.  Ephrin-As Guide the Formation of Functional Maps in the Visual Cortex , 2005, Neuron.

[42]  A. Huberman,et al.  Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus , 2005, Nature Neuroscience.

[43]  Yehezkel Ben-Ari,et al.  Retinal Waves Trigger Spindle Bursts in the Neonatal Rat Visual Cortex , 2006, The Journal of Neuroscience.

[44]  D. L. Adams,et al.  Monocular cells without ocular dominance columns. , 2006, Journal of neurophysiology.