Transitive Signatures from Braid Groups

Transitive signature is an interesting primitive due to Micali and Rivest. During the past years, many constructions of transitive signatures have been proposed based on various assumptions. In this paper, we provide the first construction of transitive signature schemes by using braid groups. In the random oracle model, our proposals are proved to be transitively unforgeable against adaptively chosen message attack under the assumption of the intractability of one-more matching conjugate problem (OM-MCP) over braid groups. Moreover, the proposed schemes are invulnerable to currently known quantum attacks.

[1]  David Naccache,et al.  Topics in Cryptology — CT-RSA 2001 , 2001, Lecture Notes in Computer Science.

[2]  Hidenori Kuwakado,et al.  Transitive Signature Scheme for Directed Trees , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[3]  Hao Yan-hua,et al.  Efficient Directed Transitive Signature Scheme , 2005 .

[4]  Iris Anshel,et al.  New Key Agreement Protocols in Braid Group Cryptography , 2001, CT-RSA.

[5]  J. González-Meneses Improving an algorithm to solve Multiple Simultaneous Conjugacy Problems in braid groups , 2002, math/0212150.

[6]  Jung Hee Cheon,et al.  A Polynomial Time Algorithm for the Braid Diffie-Hellman Conjugacy Problem , 2003, CRYPTO.

[7]  Jung Hee Cheon,et al.  New Public-Key Cryptosystem Using Braid Groups , 2000, CRYPTO.

[8]  Hugh R. Morton,et al.  ALGORITHMS FOR POSITIVE BRAIDS , 1994 .

[9]  Zhenfu Cao,et al.  One-more matching conjugate problem and security of braid-based signatures , 2007, ASIACCS '07.

[10]  Colin Boyd,et al.  Advances in Cryptology - ASIACRYPT 2001 , 2001 .

[11]  James Hughes,et al.  A Linear Algebraic Attack on the AAFG1 Braid Group Cryptosystem , 2002, ACISP.

[12]  Silvio Micali,et al.  Transitive Signature Schemes , 2002, CT-RSA.

[13]  Victor Shoup Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings , 2005, CRYPTO.

[14]  Masayuki Abe,et al.  Topics in Cryptology CT-RSA 2007 , 2007 .

[15]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[16]  Chanathip Namprempre,et al.  The One-More-RSA-Inversion Problems and the Security of Chaum's Blind Signature Scheme , 2003, Journal of Cryptology.

[17]  Yuliang Zheng,et al.  Advances in Cryptology — ASIACRYPT 2002 , 2002, Lecture Notes in Computer Science.

[18]  Douglas R. Stinson,et al.  New Approaches to Designing Public Key Cryptosystems Using One-Way Functions and Trapdoors in Finite Groups , 2001, Journal of Cryptology.

[19]  Bart Preneel,et al.  Topics in Cryptology — CT-RSA 2002 , 2002, Lecture Notes in Computer Science.

[20]  Xun Yi Directed Transitive Signature Scheme , 2007, CT-RSA.

[21]  Mihir Bellare,et al.  Transitive Signatures Based on Factoring and RSA , 2002, ASIACRYPT.

[22]  Mihir Bellare Advances in Cryptology — CRYPTO 2000 , 2000, Lecture Notes in Computer Science.

[23]  Mihir Bellare,et al.  Transitive signatures: new schemes and proofs , 2005, IEEE Transactions on Information Theory.

[24]  Andrei V. Kelarev,et al.  Braid-based cryptography , 2005 .

[25]  H. Zhu Model for undirected transitive signatures , 2004 .

[26]  D. Goldfeld,et al.  An algebraic method for public-key cryptography , 1999 .

[27]  Sangjin Lee,et al.  Pseudorandomness from Braid Groups , 2001, CRYPTO.

[28]  Christof Zalka,et al.  Shor's discrete logarithm quantum algorithm for elliptic curves , 2003, Quantum Inf. Comput..

[29]  Henry S. Warren,et al.  A modification of Warshall's algorithm for the transitive closure of binary relations , 1975, Commun. ACM.

[30]  Mahmoud Salmasizadeh,et al.  A Provably Secure Short Transitive Signature Scheme from Bilinear Group Pairs , 2004, SCN.

[31]  Jang-Won Lee,et al.  Towards generating secure keys for braid cryptography , 2007, Des. Codes Cryptogr..

[32]  Aggelos Kiayias,et al.  Self Protecting Pirates and Black-Box Traitor Tracing , 2001, CRYPTO.

[33]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[34]  Information Security and Privacy , 1996, Lecture Notes in Computer Science.

[35]  Juan Gonzalez-Meneses,et al.  Conjugacy problem for braid groups and Garside groups1 , 2001 .

[36]  Jang-Won Lee,et al.  New Signature Scheme Using Conjugacy Problem , 2002, IACR Cryptol. ePrint Arch..

[37]  Alexei G. Myasnikov,et al.  A Practical Attack on a Braid Group Based Cryptographic Protocol , 2005, CRYPTO.

[38]  Dan Boneh,et al.  Advances in Cryptology - CRYPTO 2003 , 2003, Lecture Notes in Computer Science.

[39]  Jung Hee Cheon,et al.  An Efficient Implementation of Braid Groups , 2001, ASIACRYPT.

[40]  Volker Gebhardt A New Approach to the Conjugacy Problem in Garside Groups , 2003 .

[41]  Xun Yi,et al.  SECURITY OF KUWAKADO-TANAKA TRANSITIVE SIGNATURE SCHEME FOR DIRECTED TREES , 2004 .