Model-Based Active Source Identification in Complex Environments

In this paper, we consider the problem of Active Source Identification in steady-state advection–diffusion (AD) transport systems. Unlike existing bioinspired heuristic methods, we propose a model-based approach that employs the AD–partial differential equation (PDE) to capture the transport phenomenon. Specifically, we formulate the source identification (SI) problem as a PDE-constrained optimization problem in function spaces. To obtain a tractable solution, we reduce the dimension of the concentration field using Proper Orthogonal Decomposition and approximate the unknown source field using nonlinear basis functions, drastically decreasing the number of unknowns. Moreover, to collect the concentration measurements, we control a robot sensor through a sequence of waypoints that maximize the smallest eigenvalue of the Fisher Information matrix of the unknown source parameters. Specifically, after every new measurement, an SI problem is solved to obtain a source estimate that is used to determine the next waypoint. We show that our algorithm can efficiently identify sources in complex AD systems and nonconvex domains, in simulation and experimentally. This is the first time that PDEs are used for robotic SI in practice.

[1]  Mostafa Fatemi,et al.  An Inverse Problem Approach for Elasticity Imaging through Vibroacoustics , 2010, IEEE Transactions on Medical Imaging.

[2]  Molly H. Shor,et al.  Model-based solution techniques for the source localization problem , 2000, IEEE Trans. Control. Syst. Technol..

[3]  Karen Willcox,et al.  Surrogate and reduced-order modeling: a comparison of approaches for large-scale statistical inverse problems [Chapter 7] , 2010 .

[4]  Y. Chen,et al.  Optimal Mobile Sensing Policy for Parameter Estimation of Distributed Parameter Systems : Finite Horizon Closed-loop Solution , 2008 .

[5]  D. Ucinski Optimal measurement methods for distributed parameter system identification , 2004 .

[6]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[7]  M. Ani Hsieh,et al.  Multi-agent search for source localization in a turbulent medium , 2016 .

[8]  I. Mezić,et al.  Metrics for ergodicity and design of ergodic dynamics for multi-agent systems , 2011 .

[9]  Adam Fic,et al.  Solving Transient Nonlinear Heat Conduction Problems by Proper Orthogonal Decomposition and the Finite-Element Method , 2005 .

[10]  Gamini Dissanayake,et al.  Planning under uncertainty using model predictive control for information gathering , 2006, Robotics Auton. Syst..

[11]  H. Langtangen Computational Partial Differential Equations , 1999 .

[12]  Belinda B. King,et al.  Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations , 2001 .

[13]  Video Clip , 1992 .

[14]  Bruno Sinopoli,et al.  Multiple Source Detection and Localization in Advection-Diffusion Processes Using Wireless Sensor Networks , 2009, 2009 30th IEEE Real-Time Systems Symposium.

[15]  R. Andrew Russell,et al.  Robot Odor Localization: A Taxonomy and Survey , 2008, Int. J. Robotics Res..

[16]  Brian R. LaCour,et al.  Sensor Management for Particle Filter Tracking , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[17]  William M. Spears,et al.  Distributed robotics approach to chemical plume tracing , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Wilkins Aquino,et al.  A source sensitivity approach for source localization in steady-state linear systems , 2012 .

[19]  R. Andrew Russell,et al.  A comparison of reactive robot chemotaxis algorithms , 2003, Robotics Auton. Syst..

[20]  J. Oden,et al.  Finite Element Methods for Flow Problems , 2003 .

[21]  D. Logan A First Course in the Finite Element Method , 2001 .

[22]  Lino Marques,et al.  Virtual cancelation plume for multiple odor source localization , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  David E. Keyes,et al.  Parallel Algorithms for PDE-Constrained Optimization , 2006, Parallel Processing for Scientific Computing.

[24]  Massimo Vergassola,et al.  ‘Infotaxis’ as a strategy for searching without gradients , 2007, Nature.

[25]  P. J. Roberts,et al.  TURBULENT DIFFUSION , 2002 .

[26]  Maciej Patan,et al.  Optimal scheduling of mobile sensor networks for detection and localization of stationary contamination sources , 2008, 2008 11th International Conference on Information Fusion.

[27]  Hubert B. Keller,et al.  Source localization by spatially distributed electronic noses for advection and diffusion , 2005, IEEE Transactions on Signal Processing.

[28]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[29]  António Manuel Santos Pascoal,et al.  A distributed formation-based odor source localization algorithm - design, implementation, and wind tunnel evaluation , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[30]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[31]  C. Guestrin,et al.  Near-optimal sensor placements: maximizing information while minimizing communication cost , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[32]  Michael M. Zavlanos,et al.  Model-based sparse source identification , 2015, 2015 American Control Conference (ACC).

[33]  D. Wilcox Turbulence modeling for CFD , 1993 .

[34]  Gaurav S. Sukhatme,et al.  Bacterium-inspired robots for environmental monitoring , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[35]  Héctor Ramírez Cabrera,et al.  A Global Algorithm for Nonlinear Semidefinite Programming , 2004, SIAM J. Optim..

[36]  Michael M. Zavlanos,et al.  Distributed Reduced Order Source Identification , 2018, 2018 Annual American Control Conference (ACC).

[37]  Roland W. Freund,et al.  A sequential semidefinite programming method and an application in passive reduced-order modeling , 2005, math/0503135.

[38]  Nicholas J. Higham,et al.  Modifying the inertia of matrices arising in optimization , 1998 .

[39]  Todd D. Murphey,et al.  Ergodic Exploration of Distributed Information , 2016, IEEE Transactions on Robotics.

[40]  Michael M. Zavlanos,et al.  Nonlinear reduced order source identification , 2016, 2016 American Control Conference (ACC).

[41]  J. Gower,et al.  Minimum Spanning Trees and Single Linkage Cluster Analysis , 1969 .

[42]  Assad A. Oberai,et al.  INVERSE PROBLEMS PII: S0266-5611(03)54272-1 Solution of inverse problems in elasticity imaging using the adjoint method , 2003 .

[43]  Kian Hsiang Low,et al.  Multi-robot informative path planning for active sensing of environmental phenomena: a tale of two algorithms , 2013, AAMAS.

[44]  Lino Marques,et al.  Olfaction-based mobile robot navigation , 2002 .

[45]  Stergios I. Roumeliotis,et al.  Adaptive Sensing for Instantaneous Gas Release Parameter Estimation , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[46]  Hans Petter Langtangen,et al.  Computational Partial Differential Equations - Numerical Methods and Diffpack Programming , 1999, Lecture Notes in Computational Science and Engineering.

[47]  George J. Pappas,et al.  Distributed Algorithms for Stochastic Source Seeking with Mobile Robot Networks: Technical Report , 2014, 1402.0051.

[48]  Geoffrey A. Hollinger,et al.  Active planning for underwater inspection and the benefit of adaptivity , 2012, Int. J. Robotics Res..

[49]  Karen Willcox,et al.  Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..

[50]  D R Webster,et al.  Bioinspired algorithm for autonomous sensor-driven guidance in turbulent chemical plumes , 2012, Bioinspiration & biomimetics.

[51]  J. Karl Hedrick,et al.  Particle filter based information-theoretic active sensing , 2010, Robotics Auton. Syst..

[52]  B. Reddy,et al.  Introductory Functional Analysis: With Applications to Boundary Value Problems and Finite Elements , 1997 .

[53]  Roland Herzog,et al.  Sequentially optimal sensor placement in thermoelastic models for real time applications , 2015 .

[54]  Michael M. Zavlanos,et al.  Distributed State Estimation Using Intermittently Connected Robot Networks , 2018, IEEE Transactions on Robotics.

[55]  E. Somersalo,et al.  Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .

[56]  Omer San,et al.  Learning-based robust stabilization for reduced-order models of 2D and 3D Boussinesq equations , 2017 .

[57]  Wilkins Aquino,et al.  An object-oriented framework for reduced-order models using proper orthogonal decomposition (POD) , 2007 .

[58]  Martin Burger,et al.  Discovering a Point Source in Unknown Environments , 2008, WAFR.

[59]  Fanglai Zhu,et al.  State estimation and unknown input reconstruction via both reduced-order and high-order sliding mode observers☆ , 2012 .

[60]  Kevin R. Long,et al.  A variational finite element method for source inversion for convective-diffusive transport , 2003 .