A neuro-fuzzy approach for robot system safety

Robot safety is a critical and largely unsolved problem involving the interaction of man and machine. The paper presents a new approach to robot safety which uses an integrated sensing architecture for monitoring the robot workspace, and a new detection and decision logic for regulating the safe operation of the robot. Sensory information is fused through a trained neural network to produce a map of the hazards. Using this combined map, and information about the robot's current position and velocity, a set of fuzzy logic rules has been implemented to regulate robot activity. Simulation results presented in the paper indicate that this method is both effective in detection of potentially hazardous situations and computationally feasible.

[1]  Dennis M. Buede,et al.  Data Fusion and Decision Support for Command and Control , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  James H. Graham,et al.  A Safety and Collision Avoidance System for Industrial Robots , 1986, IEEE Transactions on Industry Applications.

[3]  Hobart R. Everett,et al.  Sensors for Mobile Robots: Theory and Application , 1995 .

[4]  L. Zadeh,et al.  An Introduction to Fuzzy Logic Applications in Intelligent Systems , 1992 .

[5]  Prakash P. Shenoy,et al.  Propagating Belief Functions with Local Computations , 1986, IEEE Expert.

[6]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[7]  Yoram Koren,et al.  Real-time obstacle avoidance for fact mobile robots , 1989, IEEE Trans. Syst. Man Cybern..

[8]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[9]  James H. Graham A fuzzy logic approach for safety and collision avoidance in robotic systems , 1995 .

[10]  Larry H. Matthies,et al.  Integration of sonar and stereo range data using a grid-based representation , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[11]  Fadi Dornaika,et al.  Visually guided object grasping , 1998, IEEE Trans. Robotics Autom..

[12]  Wyatt S. Newman,et al.  Reflexive collision avoidance: a generalized approach , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[13]  Ren C. Luo,et al.  Multisensor integration and fusion for intelligent machines and systems , 1995 .

[14]  Martin Herman,et al.  Real-time obstacle avoidance using central flow divergence and peripheral flow , 2017, Proceedings of IEEE International Conference on Computer Vision.

[15]  Joseph R. Cavallaro,et al.  Layered dynamic fault detection and tolerance for robots , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[16]  Malcolm C. Harrison,et al.  An analysis of four uncertainty calculi , 1988, IEEE Trans. Syst. Man Cybern..

[17]  Ren C. Luo,et al.  Dynamic multi-sensor data fusion system for intelligent robots , 1988, IEEE J. Robotics Autom..

[18]  James H. Graham,et al.  Sensory integration in a neural network-based robot safety system , 1995 .

[19]  Edward H. Shortliffe,et al.  A Method for Managing Evidential Reasoning in a Hierarchical Hypothesis Space , 1985, Artif. Intell..

[20]  Belur V. Dasarathy Paradigms for information processing in multisensor environments , 1990, Defense, Security, and Sensing.

[21]  Giulio Sandini,et al.  On the Advantages of Polar and Log-Polar Mapping for Direct Estimation of Time-To-Impact from Optical Flow , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Su-Shing Chen,et al.  Multisensor fusion and navigation of mobile robots , 1987 .

[23]  Alexandre Bernardino,et al.  Binocular tracking: integrating perception and control , 1999, IEEE Trans. Robotics Autom..

[24]  Takeo Kanade,et al.  Computational sensor for visual tracking with attention , 1998, IEEE J. Solid State Circuits.

[25]  N. D. Duffy,et al.  Real-time collision avoidance system for multiple robots operating in shared work-space , 1989 .

[26]  Toshio Fukuda,et al.  Hierarchical intelligent control for robotic motion by using fuzzy, artificial intelligence, and neural network , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[27]  Takeo Kanade,et al.  A VLSI sorting image sensor: global massively parallel intensity-to-time processing for low-latency adaptive vision , 1999, IEEE Trans. Robotics Autom..

[28]  Vladimir J. Lumelsky,et al.  Real-time collision avoidance in teleoperated whole-sensitive robot arm manipulators , 1993, IEEE Trans. Syst. Man Cybern..

[29]  François Chaumette,et al.  2½D visual servoing , 1999, IEEE Trans. Robotics Autom..

[30]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[31]  P. L. Bogler,et al.  Shafer-dempster reasoning with applications to multisensor target identification systems , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[32]  Waldemar Karwowski,et al.  Intelligent Neural Network Based Decision Unit for Robot Safety , 1996, J. Intell. Fuzzy Syst..

[33]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[34]  J. H. Graham,et al.  A sensory-based robotic safety system , 1985 .

[35]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[36]  Hyung Suck Cho,et al.  A Sensor-based Obstacle Avoidance Controller For A Mobile Robot Using Fuzzy Logic And Neural Network , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  M. Nagamachi Ten fatal accidents due to robots in Japan , 1988 .

[38]  L. A. Zedeh Knowledge representation in fuzzy logic , 1989 .

[39]  Ren C. Luo,et al.  Multisensor integration and fusion in intelligent systems , 1989, IEEE Trans. Syst. Man Cybern..