Robust adaptive Kalman filters for linear time-varying systems with stochastic parametric uncertainties

We present an adaptive robust Kalman filtering algorithm that addresses estimation problems that arise in linear time-varying systems with stochastic parametric uncertainties. The filter has the one-step predictor-corrector structure and minimizes the mean square estimation error at each step, with the minimization reduced to a convex optimization problem based on linear matrix inequalities. The algorithm is shown to converge when the system is mean square stable and the state-space matrices are time-invariant. A numerical example, consisting of equalizer design for a communication channel, demonstrates that our algorithm offers considerable improvement in performance when compared to standard Kalman filtering techniques.

[1]  Bor-Sen Chen,et al.  Minimax robust deconvolution filters under stochastic parametric and noise uncertainties , 1994, IEEE Trans. Signal Process..

[2]  Sylvie Marcos,et al.  A network of adaptive Kalman filters for data channel equalization , 2000, IEEE Trans. Signal Process..

[3]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  D. Hinrichsen,et al.  Stochastic $H^\infty$ , 1998 .

[5]  U. Shaked,et al.  H,-OPTIMAL ESTIMATION: A TUTORIAL , 1992 .

[6]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[7]  Rami Mangoubi Robust Estimation and Failure Detection: A Concise Treatment , 1998 .

[8]  Thomas Kailath,et al.  On linear H∞ equalization of communication channels , 2000, IEEE Trans. Signal Process..

[9]  S. Pasupathy,et al.  Joint data and Kalman estimation of fading channel using a generalized Viterbi algorithm , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.

[10]  C. Cowan,et al.  Adaptive Filters and Equalisers , 1988 .

[11]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[12]  Pramod P. Khargonekar,et al.  Mixed H2/H∞ filtering , 1996 .

[13]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[14]  J. Mendel Lessons in Estimation Theory for Signal Processing, Communications, and Control , 1995 .

[15]  Lihua Xie,et al.  Robust Kalman filtering for uncertain discrete-time systems , 1994, IEEE Trans. Autom. Control..

[16]  Ian R. Petersen,et al.  Robust state estimation and model validation for discrete-time uncertain systems with a deterministic description of noise and uncertainty , 1998, Autom..

[17]  John G. Proakis,et al.  Digital Communications , 1983 .

[18]  D. McFarlane,et al.  Optimal guaranteed cost filtering for uncertain discrete-time linear systems , 1996 .

[19]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[20]  Minyue Fu,et al.  A linear matrix inequality approach to robust H∞ filtering , 1997, IEEE Trans. Signal Process..

[21]  L. Ghaoui State-feedback control of systems with multiplicative noise via linear matrix inequalities , 1995 .