Sampling-based optimal motion planning for non-holonomic dynamical systems

Sampling-based motion planning algorithms, such as the Probabilistic RoadMap (PRM) and the Rapidly-exploring Random Tree (RRT), have received a large and growing amount of attention during the past decade. Most recently, sampling-based algorithms, such as the PRM* and RRT*, that guarantee asymptotic optimality, i.e., almost-sure convergence towards optimal solutions, have been proposed. Despite the experimental success of asymptotically-optimal sampling-based algorithms, their extensions to handle complex non-holonomic dynamical systems remains largely an open problem. In this paper, with the help of results from differential geometry, we extend the RRT* algorithm to handle a large class of non-holonomic dynamical systems. We demonstrate the performance of the algorithm in computational experiments involving the Dubins' car dynamics.

[1]  Wei-Liang Chow Über Systeme von liearren partiellen Differentialgleichungen erster Ordnung , 1940 .

[2]  Wei-Liang Chow Über Systeme von linearen partiellen Differential-gleichungen erster Ordnung , 1941 .

[3]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[4]  R. Hermann On the Accessibility Problem in Control Theory , 1963 .

[5]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[6]  A. Krener A Generalization of Chow’s Theorem and the Bang-Bang Theorem to Nonlinear Control Problems , 1974 .

[7]  H. Hermes Lie Algebras of Vector Fields and Local Approximation of Attainable Sets , 1978 .

[8]  A. Isidori Nonlinear Control Systems , 1985 .

[9]  J. Reif Complexity of the Generalized Mover's Problem. , 1985 .

[10]  R. Strichartz Sub-Riemannian geometry , 1986 .

[11]  H. Sussmann A general theorem on local controllability , 1987 .

[12]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[13]  A. Bellaïche The tangent space in sub-riemannian geometry , 1994 .

[14]  M. Gromov Carnot-Carathéodory spaces seen from within , 1996 .

[15]  V. Jurdjevic Geometric control theory , 1996 .

[16]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[17]  Frédéric Jean,et al.  Geometry of nonholonomic systems , 1998 .

[18]  Jean-Paul Laumond,et al.  Guidelines in nonholonomic motion planning for mobile robots , 1998 .

[19]  Jean-Claude Latombe,et al.  Motion Planning: A Journey of Robots, Molecules, Digital Actors, and Other Artifacts , 1999, Int. J. Robotics Res..

[20]  David L. Elliott,et al.  Geometric control theory , 2000, IEEE Trans. Autom. Control..

[21]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[22]  Reid G. Simmons,et al.  Approaches for heuristically biasing RRT growth , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[23]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[24]  Anthony Stentz,et al.  Anytime RRTs , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[26]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[27]  G. Swaminathan Robot Motion Planning , 2006 .

[28]  Jonathan P. How,et al.  Real-Time Motion Planning With Applications to Autonomous Urban Driving , 2009, IEEE Transactions on Control Systems Technology.

[29]  Emilio Frazzoli,et al.  Optimal kinodynamic motion planning using incremental sampling-based methods , 2010, 49th IEEE Conference on Decision and Control (CDC).

[30]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[31]  Emilio Frazzoli,et al.  Anytime Motion Planning using the RRT* , 2011, 2011 IEEE International Conference on Robotics and Automation.

[32]  Emilio Frazzoli,et al.  Asymptotically-optimal path planning for manipulation using incremental sampling-based algorithms , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Jur P. van den Berg,et al.  Kinodynamic RRT*: Optimal Motion Planning for Systems with Linear Differential Constraints , 2012, ArXiv.

[34]  Leslie Pack Kaelbling,et al.  LQR-RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics , 2012, 2012 IEEE International Conference on Robotics and Automation.