Sampling-based optimal motion planning for non-holonomic dynamical systems
暂无分享,去创建一个
[1] Wei-Liang Chow. Über Systeme von liearren partiellen Differentialgleichungen erster Ordnung , 1940 .
[2] Wei-Liang Chow. Über Systeme von linearen partiellen Differential-gleichungen erster Ordnung , 1941 .
[3] L. Dubins. On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .
[4] R. Hermann. On the Accessibility Problem in Control Theory , 1963 .
[5] L. Hörmander. Hypoelliptic second order differential equations , 1967 .
[6] A. Krener. A Generalization of Chow’s Theorem and the Bang-Bang Theorem to Nonlinear Control Problems , 1974 .
[7] H. Hermes. Lie Algebras of Vector Fields and Local Approximation of Attainable Sets , 1978 .
[8] A. Isidori. Nonlinear Control Systems , 1985 .
[9] J. Reif. Complexity of the Generalized Mover's Problem. , 1985 .
[10] R. Strichartz. Sub-Riemannian geometry , 1986 .
[11] H. Sussmann. A general theorem on local controllability , 1987 .
[12] L. Shepp,et al. OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .
[13] A. Bellaïche. The tangent space in sub-riemannian geometry , 1994 .
[14] M. Gromov. Carnot-Carathéodory spaces seen from within , 1996 .
[15] V. Jurdjevic. Geometric control theory , 1996 .
[16] B. Faverjon,et al. Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .
[17] Frédéric Jean,et al. Geometry of nonholonomic systems , 1998 .
[18] Jean-Paul Laumond,et al. Guidelines in nonholonomic motion planning for mobile robots , 1998 .
[19] Jean-Claude Latombe,et al. Motion Planning: A Journey of Robots, Molecules, Digital Actors, and Other Artifacts , 1999, Int. J. Robotics Res..
[20] David L. Elliott,et al. Geometric control theory , 2000, IEEE Trans. Autom. Control..
[21] S. LaValle,et al. Randomized Kinodynamic Planning , 2001 .
[22] Reid G. Simmons,et al. Approaches for heuristically biasing RRT growth , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).
[23] A. D. Lewis,et al. Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.
[24] Anthony Stentz,et al. Anytime RRTs , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[25] Steven M. LaValle,et al. Planning algorithms , 2006 .
[26] R. Montgomery. A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .
[27] G. Swaminathan. Robot Motion Planning , 2006 .
[28] Jonathan P. How,et al. Real-Time Motion Planning With Applications to Autonomous Urban Driving , 2009, IEEE Transactions on Control Systems Technology.
[29] Emilio Frazzoli,et al. Optimal kinodynamic motion planning using incremental sampling-based methods , 2010, 49th IEEE Conference on Decision and Control (CDC).
[30] Emilio Frazzoli,et al. Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..
[31] Emilio Frazzoli,et al. Anytime Motion Planning using the RRT* , 2011, 2011 IEEE International Conference on Robotics and Automation.
[32] Emilio Frazzoli,et al. Asymptotically-optimal path planning for manipulation using incremental sampling-based algorithms , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[33] Jur P. van den Berg,et al. Kinodynamic RRT*: Optimal Motion Planning for Systems with Linear Differential Constraints , 2012, ArXiv.
[34] Leslie Pack Kaelbling,et al. LQR-RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics , 2012, 2012 IEEE International Conference on Robotics and Automation.