Shape-from-Shading by Iterative Fast Marching for Vertical and Oblique Light Sources

[1]  Yehezkel Yeshurun,et al.  Reconstruction of medical images by perspective shape-from-shading , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[2]  Yehezkel Yeshurun,et al.  Perspective shape-from-shading by fast marching , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[3]  Yehezkel Yeshurun,et al.  A new perspective [on] shape-from-shading , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[4]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[5]  Antonio Robles-Kelly,et al.  Model Acquisition Using Shape-from-Shading , 2002, AMDO.

[6]  Ron Kimmel,et al.  Optimal Algorithm for Shape from Shading and Path Planning , 2001, Journal of Mathematical Imaging and Vision.

[7]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[8]  Dimitris N. Metaxas,et al.  Coupled lighting direction and shape estimation from single images , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[9]  Ping-Sing Tsai,et al.  Shape from Shading: A Survey , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Reinhard Klette,et al.  Computer vision - three-dimensional data from images , 1998 .

[11]  Ryszard Kozera,et al.  Uniqueness in Shape from Shading Revisited , 1997, Journal of Mathematical Imaging and Vision.

[12]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  James A. Sethian,et al.  Theory, algorithms, and applications of level set methods for propagating interfaces , 1996, Acta Numerica.

[14]  Alfred M. Bruckstein,et al.  Shape from shading: Level set propagation and viscosity solutions , 1995, International Journal of Computer Vision.

[15]  Alfred M. Bruckstein,et al.  Global shape from shading , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[16]  Wojciech Chojnacki,et al.  Direct computation of shape from shading , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[17]  Mubarak Shah,et al.  Shape from shading using linear approximation , 1994, Image Vis. Comput..

[18]  C.-C. Jay Kuo,et al.  Shape from Shading with a Linear Triangular Element Surface Model , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Alex Pentland,et al.  A simple algorithm for shape from shading , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[21]  Wojciech Chojnacki,et al.  Circularly symmetric eikonal equations and non-uniqueness in computer vision , 1992 .

[22]  Alfred M. Bruckstein,et al.  Integrability disambiguates surface recovery in two-image photometric stereo , 1992, International Journal of Computer Vision.

[23]  P. Dupuis,et al.  Direct method for reconstructing shape from shading , 1991, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Rama Chellappa,et al.  Estimation of illuminant direction, albedo, and shape from shading , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  John Oliensis,et al.  Uniqueness in shape from shading , 1991, International Journal of Computer Vision.

[26]  Berthold K. P. Horn Obtaining shape from shading information , 1989 .

[27]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[28]  H. Ishii A simple, direct proof of uniqueness for solutions of the hamilton-jacobi equations of eikonal type , 1987 .

[29]  Katsushi Ikeuchi,et al.  Determining Grasp Configurations using Photometric Stereo and the PRISM Binocular Stereo System , 1986 .

[30]  Azriel Rosenfeld,et al.  Improved Methods of Estimating Shape from Shading Using the Light Source Coordinate System , 1985, Artif. Intell..

[31]  Alex Pentland,et al.  Local Shading Analysis , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  P. Deift,et al.  Some remarks on the shape-from-shading problem in computer vision☆ , 1981 .

[33]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[34]  Berthold K. P. Horn Image Intensity Understanding , 1975 .

[35]  Olivier D. Faugeras,et al.  Shape From Shading , 2006, Handbook of Mathematical Models in Computer Vision.

[36]  Wojciech Chojnacki,et al.  Impossible and ambiguous shading patterns , 2004, International Journal of Computer Vision.

[37]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[38]  Reinhard Klette,et al.  Shape from Shading and Photometric Stereo Methods , 1998 .

[39]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[40]  P. Lions,et al.  Viscosity solutions of Hamilton-Jacobi equations , 1983 .

[41]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .