Periodic homogenization for weakly elliptic Hamilton-Jacobi-Bellman equations with critical fractional diffusion

In this paper we establish periodic homogenization for Hamilton-Jacobi-Bellman (HJB) equations, associated to nonlocal operators of integro-differential type. We consider the case when the fractional diffusion has the same order as the drift term, and is weakly elliptic. The outcome of the paper is twofold. One one hand, we provide Lipschitz regularity results for weakly elliptic non-local HJB, extending the results previously obtained in [8]. On the other hand, we establish a convergence result, based on half relaxed limits and a comparison principle for the effective problem. The latter strongly relies on the regularity and the ellipticity properties of the effective Hamiltonian, for which a fine Lipschitz estimate of the corrector plays a crucial role.

[1]  H. Ishii On uniqueness and existence of viscosity solutions of fully nonlinear second‐order elliptic PDE's , 1989 .

[2]  Russell W. Schwab Periodic Homogenization for Nonlinear Integro-Differential Equations , 2010, SIAM J. Math. Anal..

[3]  G. Barles,et al.  Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations , 2011 .

[4]  H'ector A. Chang-Lara,et al.  H\"older estimates for non-local parabolic equations with critical drift , 2014, 1408.0676.

[5]  Chenchen Mou,et al.  Uniqueness of viscosity solutions for a class of integro-differential equations , 2015 .

[6]  Adina Ciomaga,et al.  On the strong maximum principle for second order nonlinear parabolic integro-differential equations , 2010, Advances in Differential Equations.

[7]  P. Souganidis,et al.  Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media , 2010 .

[8]  Julián Fernández Bonder,et al.  H-Convergence Result for Nonlocal Elliptic-Type Problems via Tartar's Method , 2016, SIAM J. Math. Anal..

[9]  G. Barles,et al.  Lipschitz regularity of solutions for mixed integro-differential equations , 2011, 1107.3228.

[10]  Russell W. Schwab,et al.  Min–Max formulas for nonlocal elliptic operators on Euclidean Space , 2018, Nonlinear Analysis.

[11]  G. Barles,et al.  Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations , 2012, 1210.5691.

[12]  G. Barles,et al.  Second-order elliptic integro-differential equations: viscosity solutions' theory revisited , 2007, math/0702263.

[13]  M. Arisawa Homogenization of a Class of Integro-Differential Equations with Lévy Operators , 2009, 1012.4163.

[14]  Russell W. Schwab Stochastic homogenization of Hamilton-Jacobi equations in stationary ergodic spatio-temporal media , 2009 .

[15]  Luis Silvestre,et al.  Regularity for parabolic integro-differential equations with very irregular kernels , 2014, 1412.3790.

[16]  M. Bardi,et al.  Periodic Homogenization of Deterministic Control Problems via Limit Occupational Measures , 2015 .

[17]  Erhan Bayraktar,et al.  Solvability of the Nonlinear Dirichlet Problem with Integro-differential Operators , 2018, SIAM J. Control. Optim..

[18]  G. Barles,et al.  Exit Time Problems in Optimal Control and Vanishing Viscosity Method , 1988 .

[19]  Guy Barles,et al.  Regularity results and large time behavior for integro-differential equations with coercive Hamiltonians , 2014, Calculus of Variations and Partial Differential Equations.

[20]  Andrey L. Piatnitski,et al.  Periodic Homogenization of Nonlocal Operators with a Convolution-Type Kernel , 2016, SIAM J. Math. Anal..

[21]  Russell W. Schwab,et al.  Min–max formulas for nonlocal elliptic operators , 2016, Calculus of Variations and Partial Differential Equations.

[22]  Nestor Guillen,et al.  Coupling Lévy measures and comparison principles for viscosity solutions , 2018, Transactions of the American Mathematical Society.

[23]  Martino Bardi,et al.  Viscosity Solutions Methods for Singular Perturbations in Deterministic and Stochastic Control , 2001, SIAM J. Control. Optim..

[24]  M. Arisawa Homogenizations of integro-differential equations with Lévy operators with asymmetric and degenerate densities , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[25]  H. Soner Optimal control with state-space constraint I , 1986 .

[26]  Andrey L. Piatnitski,et al.  Homogenization of Lévy-type Operators with Oscillating Coefficients , 2018, SIAM J. Math. Anal..

[27]  L. Silvestre On the differentiability of the solution to the Hamilton–Jacobi equation with critical fractional diffusion , 2009, 0911.5147.

[28]  Panagiotis E. Souganidis,et al.  Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media , 2005 .

[29]  Kenneth H. Karlsen,et al.  Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: A viscosity solution approach , 2001, Finance Stochastics.

[30]  M. Bardi,et al.  Cauchy problem and periodic homogenization for nonlocal Hamilton–Jacobi equations with coercive gradient terms , 2018, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[31]  H. Soner OPTIMAL CONTROL WITH STATE-SPACE CONSTRAINT II , 2019 .

[32]  P. Courrège Sur la forme intégro-différentielle des opérateurs de $C^\infty _k$ dans $C$ satisfaisant au principe du maximum , 1966 .

[33]  L. Silvestre Holder estimates for advection fractional-diffusion equations , 2010, 1009.5723.

[34]  M. Bardi,et al.  Convergence in Multiscale Financial Models with Non-Gaussian Stochastic Volatility , 2014, 1405.6514.

[35]  L. Evans The perturbed test function method for viscosity solutions of nonlinear PDE , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[36]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[37]  L. Evans Periodic homogenisation of certain fully nonlinear partial differential equations , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[38]  Luis Silvestre,et al.  Regularity theory for fully nonlinear integro‐differential equations , 2007, 0709.4681.

[39]  G. Barles,et al.  Discontinuous solutions of deterministic optimal stopping time problems , 1987 .

[40]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.