Synthesis of complex dynamic character motion from simple animations

In this paper we present a general method for rapid prototyping of realistic character motion. We solve for the natural motion from a simple animation provided by the animator. Our framework can be used to produce relatively complex realistic motion with little user effort.We describe a novel constraint detection method that automatically determines different constraints on the character by analyzing the input motion. We show that realistic motion can be achieved by enforcing a small set of linear and angular momentum constraints. This simplified approach helps us avoid the complexities of computing muscle forces. Simpler dynamic constraints also allow us to generate animations of models with greater complexity, performing more intricate motions. Finally, we show that by learning a small set of key parameters that describe a character pose we can help a non-skilled animator rapidly create realistic character motion.

[1]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[2]  Thomas W. Calvert,et al.  Goal-directed, dynamic animation of human walking , 1989, SIGGRAPH.

[3]  R. M. Alexander,et al.  Optimization and gaits in the locomotion of vertebrates. , 1989, Physiological reviews.

[4]  R. M. Alexander Optimum take-off techniques for high and long jumps. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[5]  M. Yeadon The simulation of aerial movement--III. The determination of the angular momentum of the human body. , 1990, Journal of biomechanics.

[6]  W S Levine,et al.  An optimal control model for maximum-height human jumping. , 1990, Journal of biomechanics.

[7]  Jessica K. Hodgins,et al.  Animation of dynamic legged locomotion , 1991, SIGGRAPH.

[8]  R. M. Alexander Optimum timing of muscle activation for simple models of throwing. , 1991, Journal of theoretical biology.

[9]  M G Pandy,et al.  A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. , 1992, Journal of biomechanical engineering.

[10]  Michael F. Cohen,et al.  Interactive spacetime control for animation , 1992, SIGGRAPH.

[11]  Michiel van de Panne,et al.  Virtual Wind-up Toys for Animation , 1993 .

[12]  Michiel van de Panne,et al.  Sensor-actuator networks , 1993, SIGGRAPH.

[13]  Zicheng Liu,et al.  Hierarchical spacetime control , 1994, SIGGRAPH.

[14]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[15]  Zoran Popovic,et al.  Motion warping , 1995, SIGGRAPH.

[16]  Lance Williams,et al.  Motion signal processing , 1995, SIGGRAPH.

[17]  P. de Leva Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. , 1996, Journal of biomechanics.

[18]  Michael F. Cohen,et al.  Efficient generation of motion transitions using spacetime constraints , 1996, SIGGRAPH.

[19]  Michael Gleicher,et al.  Motion editing with spacetime constraints , 1997, SI3D.

[20]  Michiel van de Panne,et al.  From Footprints to Animation , 1997, Comput. Graph. Forum.

[21]  Jessica K. Hodgins,et al.  Adapting simulated behaviors for new characters , 1997, SIGGRAPH.

[22]  J. Hodgins ANIMATING HUMAN MOTION , 1998 .

[23]  Michael Gleicher,et al.  Retargetting motion to new characters , 1998, SIGGRAPH.

[24]  Michiel van de Panne,et al.  Footprint-based Quadruped Motion Synthesis , 1998, Graphics Interface.

[25]  Michael F. Cohen,et al.  Verbs and Adverbs: Multidimensional Motion Interpolation , 1998, IEEE Computer Graphics and Applications.

[26]  Michael Gleicher,et al.  Constraint-based motion adaptation , 1998, Comput. Animat. Virtual Worlds.

[27]  Zoran Popovic,et al.  Physically based motion transformation , 1999, SIGGRAPH.

[28]  Jessica K. Hodgins,et al.  Tracking and Modifying Upper-body Human Motion Data with Dynamic Simulation , 1999, Computer Animation and Simulation.

[29]  Satoshi Matsuoka,et al.  Teddy: A Sketching Interface for 3D Freeform Design , 1999, SIGGRAPH Courses.

[30]  Nancy S. Pollard,et al.  Simple Machines for Scaling Human Motion , 1999, Computer Animation and Simulation.

[31]  Jessica K. Hodgins,et al.  Tracking and modifying human motion with dynamic simulation , 1999, SIGGRAPH '99.

[32]  R. Blickhan,et al.  Dynamics of the long jump. , 1999, Journal of biomechanics.

[33]  David E. King Generating vertical velocity and angular momentum during skating jumps , 1999 .

[34]  Sung Yong Shin,et al.  A hierarchical approach to interactive motion editing for human-like figures , 1999, SIGGRAPH.

[35]  Eugene Fiume,et al.  Interactive control for physically-based animation , 2000, SIGGRAPH.

[36]  Steven M. Seitz,et al.  Interactive manipulation of rigid body simulations , 2000, SIGGRAPH.

[37]  Nancy S. Pollard,et al.  Force-based motion editing for locomotion tasks , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[38]  Hyeong-Seok Ko,et al.  Motion Balance Filtering , 2000, Comput. Graph. Forum.

[39]  Jessica K. Hodgins,et al.  Simulating leaping, tumbling, landing and balancing humans , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[40]  Michael Gleicher,et al.  Motion path editing , 2001, I3D '01.

[41]  Sung Yong Shin,et al.  Computer puppetry: An importance-based approach , 2001, TOGS.

[42]  Nancy S. Pollard,et al.  Animation of Humanlike Characters: Dynamic Motion Filtering with a Physically Plausible Contact Model , 2001 .

[43]  Petros Faloutsos,et al.  Composable controllers for physics-based character animation , 2001, SIGGRAPH.

[44]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[45]  R. Blickhan,et al.  Similarity in multilegged locomotion: Bouncing like a monopode , 1993, Journal of Comparative Physiology A.