A constructive interior penalty method for optimal control problems with state and input constraints

This paper exposes a methodology which allows us to address constrained optimal control of non linear systems by interior penalty methods. A constructive choice for the penalty functions that are introduced to account for the constraints is established in the article. It is shown that it allows us to approach the solution of the non linear optimal control problem using a sequence of unconstrained problems, whose solutions are readily characterized by the simple calculus of variations. An illustrative example is given. The paper extends recent contributions, originally focused on linear dynamics.

[1]  Marko Antonio Rojas-Medar,et al.  Level-continuity of functions and applications , 1999 .

[2]  C. Hargraves,et al.  DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .

[3]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[4]  N. Petit,et al.  Constructive Methods for Initialization and Handling Mixed State-Input Constraints in Optimal Control , 2008 .

[5]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .

[6]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[7]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[8]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[9]  Andreas Kugi,et al.  Transformation of optimal control problems with a state constraint avoiding interior boundary conditions , 2008, 2008 47th IEEE Conference on Decision and Control.

[10]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[11]  M. H. Wright The interior-point revolution in optimization: History, recent developments, and lasting consequences , 2004 .

[12]  Jorge Nocedal,et al.  Knitro: An Integrated Package for Nonlinear Optimization , 2006 .

[13]  Knut Graichen,et al.  Feedforward Control Design for Finite-Time Transition Problems of Nonlinear Systems With Input and Output Constraints , 2008, IEEE Transactions on Automatic Control.

[14]  L. Lasdon,et al.  An interior penalty method for inequality constrained optimal control problems , 1967, IEEE Transactions on Automatic Control.

[15]  Lorenz T. Biegler,et al.  Dynamic optimization of the Tennessee Eastman process using the OptControlCentre , 2003, Comput. Chem. Eng..

[16]  P. Olver Nonlinear Systems , 2013 .

[17]  Emmanuel Trélat,et al.  Contrôle optimal : théorie & applications , 2005 .

[18]  J. F. Bonnans,et al.  STABILITY AND SENSITIVITY ANALYSIS FOR OPTIMAL CONTROL PROBLEMS WITH A FIRST-ORDER STATE CONSTRAINT AND APPLICATION TO CONTINUATION METHODS , 2008 .

[19]  Graham C. Goodwin,et al.  Control of constrained linear systems using fast sampling rates , 2005, Syst. Control. Lett..

[20]  Stephen J. Wright,et al.  Object-oriented software for quadratic programming , 2003, TOMS.

[21]  Luis S. Vicente On interior-point Newton algorithms for discretized optimal control problems with state constraints ∗ , 1998 .

[22]  Nicolas Petit,et al.  Design of penalty functions for optimal control of linear dynamical systems under state and input constraints , 2011, IEEE Conference on Decision and Control and European Control Conference.

[23]  Ekkehard W. Sachs,et al.  Inexact SQP Interior Point Methods and Large Scale Optimal Control Problems , 1999, SIAM J. Control. Optim..

[24]  M. Roma,et al.  Large-Scale Nonlinear Optimization , 2006 .

[25]  Stephen J. Wright Interior point methods for optimal control of discrete time systems , 1993 .

[26]  I. Michael Ross,et al.  Pseudospectral Knotting Methods for Solving Optimal Control Problems , 2004 .

[27]  Alberto Bemporad,et al.  A predictive reference governor for constrained control systems , 1998 .

[28]  N. Petit,et al.  Incorporating a class of constraints into the dynamics of optimal control problems , 2009 .

[29]  S. Fomin,et al.  Elements of the Theory of Functions and Functional Analysis , 1961 .

[30]  Manfred Morari,et al.  LQ control for constrained continuous-time systems , 2002, Autom..

[31]  J. F. Bonnans,et al.  Using logarithmic penalties in the shooting algorithm for optimal control problems , 2003 .

[32]  Mark B. Milam,et al.  Inversion Based Constrained Trajectory Optimization , 2001 .

[33]  Suresh P. Sethi,et al.  A Survey of the Maximum Principles for Optimal Control Problems with State Constraints , 1995, SIAM Rev..

[34]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[35]  R. Bhattacharya,et al.  OPTRAGEN: A MATLAB Toolbox for Optimal Trajectory Generation , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[36]  Lawrence F. Shampine,et al.  Solving Boundary Value Problems for Ordinary Differential Equations in M atlab with bvp 4 c , 2022 .