Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications

[1]  S. Lamon,et al.  Neuromorphic Optical Data Storage Enabled by Nanophotonics: A Perspective , 2024, ACS Photonics.

[2]  Yu‐Wu Zhong,et al.  A 3D nanoscale optical disk memory with petabit capacity. , 2024, Nature.

[3]  Xiaoying Shang,et al.  Lanthanide-Doped KMgF3 Upconversion Nanoparticles for Photon Avalanche Luminescence with Giant Nonlinearities. , 2023, Nano letters.

[4]  Fang Wang,et al.  On-Chip Mirror Enhanced Multiphoton Upconversion Super-Resolution Microscopy. , 2023, Nano letters.

[5]  Chao Zuo,et al.  Population Control of Upconversion Energy Transfer for Stimulation Emission Depletion Nanoscopy , 2023, Advanced science.

[6]  Hao Wang,et al.  Two‐Photon Polymerization Lithography for Optics and Photonics: Fundamentals, Materials, Technologies, and Applications , 2023, Advanced Functional Materials.

[7]  P. Piunno,et al.  Lanthanide-Doped Upconversion Nanoparticles: Exploring A Treasure Trove of NIR-Mediated Emerging Applications. , 2023, ACS applied materials & interfaces.

[8]  Qiuqiang Zhan,et al.  Super-resolution microscopy enabled by high-efficiency surface-migration emission depletion , 2022, Nature Communications.

[9]  Wei Jiang,et al.  A Comprehensive Review on Upconversion Nanomaterials-Based Fluorescent Sensor for Environment, Biology, Food and Medicine Applications , 2022, Biosensors.

[10]  B. Cohen,et al.  Indefinite and bidirectional near-infrared nanocrystal photoswitching , 2022, Nature.

[11]  S. Wilhelm,et al.  Bioimaging with Upconversion Nanoparticles , 2022, Advanced photonics research.

[12]  Lining Sun,et al.  Deep Learning Fluorescence Imaging of Visible to NIR‐II Based on Modulated Multimode Emissions Lanthanide Nanocrystals , 2022, Advanced Functional Materials.

[13]  Kaimin Du,et al.  Nanocomposites based on lanthanide-doped upconversion nanoparticles: diverse designs and applications , 2022, Light, science & applications.

[14]  P. Schuck,et al.  Size‐Dependent Photon Avalanching in Tm3+ Doped LiYF4 Nano, Micro, and Bulk Crystals , 2022, Advanced Optical Materials.

[15]  H. Cao,et al.  Lanthanide-doped upconversion nanoparticles for biological super-resolution fluorescence imaging , 2022, Cell Reports Physical Science.

[16]  Haichun Liu,et al.  Achieving low-power single-wavelength-pair nanoscopy with NIR-II continuous-wave laser for multi-chromatic probes , 2022, Nature Communications.

[17]  P. Hu,et al.  Lanthanide-doped heterostructured nanocomposites toward advanced optical anti-counterfeiting and information storage , 2022, Light, science & applications.

[18]  Haichun Liu,et al.  Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity , 2022, Nature Nanotechnology.

[19]  Abdelwahab Omri,et al.  Lanthanide-Doped Upconversion Luminescent Nanoparticles—Evolving Role in Bioimaging, Biosensing, and Drug Delivery , 2022, Materials.

[20]  B. Rühle,et al.  Stability, dissolution, and cytotoxicity of NaYF4-upconversion nanoparticles with different coatings , 2022, Scientific Reports.

[21]  Qiming Zhang,et al.  Nanophotonics-enabled optical data storage in the age of machine learning , 2021, APL Photonics.

[22]  Yundong Wang,et al.  Continuous synthesis of ultrasmall core-shell upconversion nanoparticles via a flow chemistry method , 2021, Nano Research.

[23]  B. Guan,et al.  Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing , 2021, Nature Photonics.

[24]  Yiliao Song,et al.  Optical Fingerprint Classification of Single Upconversion Nanoparticles by Deep Learning. , 2021, The journal of physical chemistry letters.

[25]  Zhengcheng Zhang,et al.  Near-infrared manipulation of multiple neuronal populations via trichromatic upconversion , 2021, Nature Communications.

[26]  Yongan Tang,et al.  Anomalous upconversion amplification induced by surface reconstruction in lanthanide sublattices , 2021, Nature Photonics.

[27]  Xin Liu,et al.  Energy migration control of multi-modal emissions in an Er3+ doped nanostructure toward information encryption and deep learning decoding. , 2021, Angewandte Chemie.

[28]  Jun Lin,et al.  Preselectable Optical Fingerprints of Heterogeneous Upconversion Nanoparticles. , 2021, Nano letters.

[29]  J. Cole,et al.  Neuron‐Inspired Steiner Tree Networks for 3D Low‐Density Metastructures , 2021, Advanced science.

[30]  Haifang Wang,et al.  Six-photon upconverted excitation energy lock-in for ultraviolet-C enhancement , 2021, Nature Communications.

[31]  Alán Aspuru-Guzik,et al.  Nanoparticle synthesis assisted by machine learning , 2021, Nature Reviews Materials.

[32]  A. Rao,et al.  Photon upconversion through triplet exciton-mediated energy relay , 2021, Nature Communications.

[33]  W. Cai,et al.  Reversible Photochemical Switching via Plasmonically Enhanced Upconversion Photoluminescence , 2021, Advanced Optical Materials.

[34]  Qiming Zhang,et al.  Continuous-wave near-infrared stimulated-emission depletion microscopy using downshifting lanthanide nanoparticles , 2021, Nature Nanotechnology.

[35]  J. Liao,et al.  Heterochromatic Nonlinear Optical Responses in Upconversion Nanoparticles for Super‐Resolution Nanoscopy , 2021, Advanced materials.

[36]  S. Burger,et al.  Axial localization and tracking of self-interference nanoparticles by lateral point spread functions , 2021, Nature Communications.

[37]  Xiaogang Liu,et al.  Dynamic upconversion multicolour editing enabled by molecule-assisted opto-electrochemical modulation , 2021, Nature Communications.

[38]  Ahmet Kusoglu,et al.  New roads and challenges for fuel cells in heavy-duty transportation , 2021, Nature Energy.

[39]  Yong Zhang,et al.  Exploring Heterostructured Upconversion Nanoparticles: From Rational Engineering to Diverse Applications. , 2021, ACS nano.

[40]  D. Shen,et al.  Low-Temperature-Induced Controllable Transversal Shell Growth of NaLnF4 Nanocrystals , 2021, Nanomaterials.

[41]  J. Liao,et al.  Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles , 2021, Nature Nanotechnology.

[42]  Yong Zhang,et al.  Orthogonal Emissive Upconversion Nanoparticles: Material Design and Applications. , 2021, Small.

[43]  Y. Wu,et al.  Nanoscale optical writing through upconversion resonance energy transfer , 2021, Science Advances.

[44]  D. Jin,et al.  Networking State of Ytterbium Ions Probing the Origin of Luminescence Quenching and Activation in Nanocrystals , 2021, Advanced science.

[45]  Yiliao Song,et al.  Multiplexed structured illumination super-resolution imaging with lifetime-engineered upconversion nanoparticles , 2021, Nanoscale advances.

[46]  Ling-Dong Sun,et al.  Lanthanide-Doped Upconversion Nanoparticles for Super-Resolution Microscopy , 2021, Frontiers in Chemistry.

[47]  Fan Zhang,et al.  Independent luminescent lifetime and intensity tuning of upconversion nanoparticles by gradient doping for multiplexed encoding. , 2020, Angewandte Chemie.

[48]  B. Tang,et al.  Recent advances in luminescent materials for super-resolution imaging via stimulated emission depletion nanoscopy. , 2020, Chemical Society reviews.

[49]  Lei Jiang,et al.  Low threshold lasing emissions from a single upconversion nanocrystal , 2020, Nature Communications.

[50]  Gordon Wetzstein,et al.  Inference in artificial intelligence with deep optics and photonics , 2020, Nature.

[51]  B. Shi,et al.  Nanorods with multidimensional optical information beyond the diffraction limit , 2020, Nature Communications.

[52]  Jinbo Yu,et al.  Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials. , 2020, Nanoscale.

[53]  Lili Tao,et al.  NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice , 2020, Nature Photonics.

[54]  S. Hell,et al.  MINSTED fluorescence localization and nanoscopy , 2020, Nature Photonics.

[55]  A. Rao,et al.  Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright , 2020, Nature.

[56]  H. Ågren,et al.  Huge upconversion luminescence enhancement by a cascade optical field modulation strategy facilitating selective multispectral narrow-band near-infrared photodetection , 2020, Light, science & applications.

[57]  E. Chan,et al.  Enhancing FRET biosensing beyond 10 nm with photon avalanche nanoparticles , 2020, Nanoscale advances.

[58]  Jie-xin Wang,et al.  Controllable Synthesis of Upconversion Nanophosphors toward Scale‐Up Productions , 2020, Particle & Particle Systems Characterization.

[59]  J. Piper,et al.  Simultaneous super-linear excitation-emission and emission depletion allows imaging of upconversion nanoparticles with higher sub-diffraction resolution. , 2020, Optics express.

[60]  J. Piper,et al.  Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance. , 2020, Nanoscale.

[61]  B. Cohen,et al.  Giant nonlinear optical responses from photon-avalanching nanoparticles , 2020, Nature.

[62]  Hui Chen,et al.  Application of upconversion rare earth fluorescent nanoparticles in biomedical drug delivery system , 2020 .

[63]  Songquan Li,et al.  Video-rate upconversion display from optimized lanthanide ion doped upconversion nanoparticles. , 2020, Nanoscale.

[64]  Shin‐Tson Wu,et al.  Mini-LED, Micro-LED and OLED displays: present status and future perspectives , 2020, Light, science & applications.

[65]  L. Cardon,et al.  Noninvasive in vivo 3D bioprinting , 2020, Science Advances.

[66]  H. Stephan,et al.  Contemporary Synthesis of Ultrasmall (sub‐10 nm) Upconverting Nanomaterials , 2020, ChemistryOpen.

[67]  Bing Chen,et al.  Emerging Frontiers of Upconversion Nanoparticles , 2020 .

[68]  Xi Chen,et al.  Perspective on photonic memristive neuromorphic computing , 2020 .

[69]  Eric Masanet,et al.  Recalibrating global data center energy-use estimates , 2020, Science.

[70]  Huang Ge,et al.  Sequence-Dependent DNA Functionalization of Upconversion Nanoparticles and Their Programmable Assemblies. , 2020, Angewandte Chemie.

[71]  Zai‐Quan Xu,et al.  Upconversion nonlinear structured illumination microscopy. , 2020, Nano letters.

[72]  Qingsong Mei,et al.  An Excitation Navigating Energy Migration of Lanthanide Ions in Upconversion Nanoparticles , 2020, Advanced materials.

[73]  Xiaoxue Xu,et al.  Super-Resolution Mapping of Single Nanoparticles inside Tumor Spheroids. , 2020, Small.

[74]  J. Ellenberg,et al.  MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells , 2020, Nature Methods.

[75]  K. Y. Loh,et al.  Recent advances in upconversion nanocrystals: Expanding the kaleidoscopic toolbox for emerging applications , 2019 .

[76]  Feng Qian,et al.  Smart Process Manufacturing Systems: Deep Integration of Artificial Intelligence and Process Manufacturing , 2019, Engineering.

[77]  Yang Tang,et al.  Opportunities and Challenges of Artificial Intelligence for Green Manufacturing in the Process Industry , 2019, Engineering.

[78]  Joel K. W. Yang,et al.  Upconversion superburst with sub-2 μs lifetime , 2019, Nature Nanotechnology.

[79]  T. Schmidt,et al.  Future and challenges for hybrid upconversion nanosystems , 2019, Nature Photonics.

[80]  Qiming Zhang,et al.  Millisecond‐Timescale, High‐Efficiency Modulation of Upconversion Luminescence by Photochemically Derived Graphene , 2019, Advanced Optical Materials.

[81]  Jinliang Liu,et al.  Recent Progress of Rare‐Earth Doped Upconversion Nanoparticles: Synthesis, Optimization, and Applications , 2019, Advanced science.

[82]  Nitish Thakor,et al.  Expanding the Toolbox of Upconversion Nanoparticles for In Vivo Optogenetics and Neuromodulation , 2019, Advanced materials.

[83]  A. Orth,et al.  3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters , 2019, Nature Communications.

[84]  B. Guan,et al.  Laser‐Splashed Plasmonic Nanocrater for Ratiometric Upconversion Regulation and Encryption , 2019, Advanced Optical Materials.

[85]  W. Park,et al.  Recent insights into upconverting nanoparticles: spectroscopy, modeling, and routes to improved luminescence. , 2019, Nanoscale.

[86]  Gungun Lin,et al.  Optical Nanomaterials and Enabling Technologies for High‐Security‐Level Anticounterfeiting , 2019, Advanced materials.

[87]  J. Capobianco,et al.  Intrinsic Time-Tunable Emissions in Core-Shell Upconverting Nanoparticle Systems. , 2019, Angewandte Chemie.

[88]  E. Chan,et al.  Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging , 2019, Nanoscale Horizons.

[89]  N. Thakor,et al.  Visualization of Intra-neuronal Motor Protein Transport through Upconversion Microscopy. , 2019, Angewandte Chemie.

[90]  Qiming Zhang,et al.  Artificial neural networks enabled by nanophotonics , 2019, Light: Science & Applications.

[91]  Xiaowang Liu,et al.  Tuning Long‐Lived Mn(II) Upconversion Luminescence through Alkaline‐Earth Metal Doping and Energy‐Level Tailoring , 2019, Advanced Optical Materials.

[92]  Lining Sun,et al.  The Bioavailability, Biodistribution, and Toxic Effects of Silica-Coated Upconversion Nanoparticles in vivo , 2019, Front. Chem..

[93]  Jin Bao,et al.  Mammalian Near-Infrared Image Vision through Injectable and Self-Powered Retinal Nanoantennae , 2019, Cell.

[94]  Fan Zhang,et al.  Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures , 2019, Nano Today.

[95]  D. Jaque,et al.  Upconversion nanoparticles for in vivo applications: limitations and future perspectives , 2019, Methods and applications in fluorescence.

[96]  H. Ågren,et al.  Fast upconversion super-resolution microscopy with 10 μs per pixel dwell times. , 2019, Nanoscale.

[97]  M. Sauer,et al.  Super-resolution microscopy demystified , 2019, Nature Cell Biology.

[98]  Andreas Falk,et al.  Critical Considerations on the Clinical Translation of Upconversion Nanoparticles (UCNPs): Recommendations from the European Upconversion Network (COST Action CM1403) , 2018, Advanced healthcare materials.

[99]  Qiuqiang Zhan,et al.  One-scan fluorescence emission difference nanoscopy developed with excitation orthogonalized upconversion nanoparticles. , 2018, Nanoscale.

[100]  J. Lippincott-Schwartz,et al.  Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales , 2018, Cell.

[101]  J. Y. Tsao,et al.  LEDs for photons, physiology and food , 2018, Nature.

[102]  Yan Wang,et al.  Infrared‐Sensitive Memory Based on Direct‐Grown MoS2–Upconversion‐Nanoparticle Heterostructure , 2018, Advanced materials.

[103]  Zhenqi Jiang,et al.  Y1-receptor-ligand-functionalized ultrasmall upconversion nanoparticles for tumor-targeted trimodality imaging and photodynamic therapy with low toxicity. , 2018, Nanoscale.

[104]  Xiaowei Zhuang,et al.  Visualizing and discovering cellular structures with super-resolution microscopy , 2018, Science.

[105]  Xiaoming Li,et al.  High-Capacity Upconversion Wavelength and Lifetime Binary Encoding for Multiplexed Biodetection. , 2018, Angewandte Chemie.

[106]  D. Fan,et al.  Remote manipulation of upconversion luminescence. , 2018, Chemical Society reviews.

[107]  Igor Aharonovich,et al.  Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles , 2018, Nature Communications.

[108]  M. Cerruti,et al.  Seeing, Targeting and Delivering with Upconverting Nanoparticles. , 2018, Journal of the American Chemical Society.

[109]  Qian Liu,et al.  Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance , 2018, Nature Photonics.

[110]  Zhenyu Liu,et al.  Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. , 2018, Small.

[111]  Bo Li,et al.  Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain. , 2018, Biomedical optics express.

[112]  Jun Lin,et al.  Current progress in the controlled synthesis and biomedical applications of ultrasmall (<10 nm) NaREF4 nanoparticles. , 2018, Dalton transactions.

[113]  Matthew R. Shaner,et al.  Net-zero emissions energy systems , 2018, Science.

[114]  Datao Tu,et al.  Large-scale synthesis of uniform lanthanide-doped NaREF4 upconversion/downshifting nanoprobes for bioapplications. , 2018, Nanoscale.

[115]  Kezhi Zheng,et al.  Advances in highly doped upconversion nanoparticles , 2018, Nature Communications.

[116]  Cheryl A. Tajon,et al.  Continuous-wave upconverting nanoparticle microlasers , 2018, Nature Nanotechnology.

[117]  Kezhi Zheng,et al.  Rewritable Optical Memory Through High‐Registry Orthogonal Upconversion , 2018, Advanced materials.

[118]  Baoming Wang,et al.  Nanoparticles for super-resolution microscopy and single-molecule tracking , 2018, Nature Methods.

[119]  Gungun Lin,et al.  The Quest for Optical Multiplexing in Bio-discoveries , 2018 .

[120]  Alán Aspuru-Guzik,et al.  Accelerating the discovery of materials for clean energy in the era of smart automation , 2018, Nature Reviews Materials.

[121]  Jeffrey B. Neaton,et al.  Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission , 2018 .

[122]  A. Meijerink,et al.  Quenching Pathways in NaYF4:Er3+,Yb3+ Upconversion Nanocrystals , 2018, ACS nano.

[123]  Liangyi Chen,et al.  Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy , 2018, Nature Biotechnology.

[124]  Meng Zhou,et al.  Direct Identification of Surface Defects and Their Influence on the Optical Characteristics of Upconversion Nanoparticles. , 2018, ACS nano.

[125]  Wei Wang,et al.  Imaging the chemical activity of single nanoparticles with optical microscopy. , 2018, Chemical Society reviews.

[126]  J. Enderlein,et al.  Fluorescent Diarylethene Photoswitches-A Universal Tool for Super-Resolution Microscopy in Nanostructured Materials. , 2018, Small.

[127]  Dayong Jin,et al.  Activation of the surface dark-layer to enhance upconversion in a thermal field , 2018 .

[128]  G. Guo,et al.  High-resolution multiphoton microscopy with a low-power continuous wave laser pump. , 2018, Optics letters.

[129]  Kenji F. Tanaka,et al.  Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics , 2018, Science.

[130]  Alberto Diaspro,et al.  STED super-resolved microscopy , 2018, Nature Methods.

[131]  Zhiguang Zhou,et al.  Microscopic inspection and tracking of single upconversion nanoparticles in living cells , 2018, Light: Science & Applications.

[132]  Qichun Zhang,et al.  Recent Advances on Functionalized Upconversion Nanoparticles for Detection of Small Molecules and Ions in Biosystems , 2018, Advanced science.

[133]  Sailing He,et al.  Non-bleaching fluorescence emission difference microscopy using single 808-nm laser excited red upconversion emission. , 2017, Optics express.

[134]  Shin-Tson Wu,et al.  Liquid crystal display and organic light-emitting diode display: present status and future perspectives , 2017, Light: Science & Applications.

[135]  Xiaoming Li,et al.  Orthogonal Multiplexed Luminescence Encoding with Near‐Infrared Rechargeable Upconverting Persistent Luminescence Composites , 2017 .

[136]  S. Wilhelm,et al.  Perspectives for Upconverting Nanoparticles. , 2017, ACS nano.

[137]  Sailing He,et al.  Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles , 2017, Nature Communications.

[138]  Li Jing,et al.  Nanophotonic particle simulation and inverse design using artificial neural networks , 2017, Science Advances.

[139]  Yu Wang,et al.  Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting , 2017, Nature Communications.

[140]  A. Zvyagin,et al.  Ultraviolet phototoxicity of upconversion nanoparticles illuminated with near-infrared light. , 2017, Nanoscale.

[141]  Xiaowang Liu,et al.  Hedgehog‐Like Upconversion Crystals: Controlled Growth and Molecular Sensing at Single‐Particle Level , 2017, Advanced materials.

[142]  S. Hell,et al.  Fluorescence nanoscopy in cell biology , 2017, Nature Reviews Molecular Cell Biology.

[143]  Fei He,et al.  Upconversion processes: versatile biological applications and biosafety. , 2017, Nanoscale.

[144]  Guanying Chen,et al.  Dye-sensitized lanthanide-doped upconversion nanoparticles. , 2017, Chemical Society reviews.

[145]  T. Jia,et al.  Depleted upconversion luminescence in NaYF4:Yb3+,Tm3+ nanoparticles via simultaneous two-wavelength excitation. , 2017, Physical chemistry chemical physics : PCCP.

[146]  Pavel Tomancak,et al.  Assessing phototoxicity in live fluorescence imaging , 2017, Nature Methods.

[147]  Wei Zheng,et al.  Adaptive optics improves multiphoton super-resolution imaging , 2017, Nature Methods.

[148]  J. Fischer,et al.  Molecular Switch for Sub-Diffraction Laser Lithography by Photoenol Intermediate-State Cis-Trans Isomerization. , 2017, ACS nano.

[149]  Deming Liu,et al.  Optimal Sensitizer Concentration in Single Upconversion Nanocrystals. , 2017, Nano letters.

[150]  Min-Gon Kim,et al.  Distinct mechanisms for the upconversion of NaYF4:Yb3+,Er3+ nanoparticles revealed by stimulated emission depletion. , 2017, Physical chemistry chemical physics : PCCP.

[151]  Ki-Uk Kyung,et al.  Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides , 2017, Scientific Reports.

[152]  Yuliang Zhao,et al.  Biodistribution, excretion, and toxicity of polyethyleneimine modified NaYF4:Yb,Er upconversion nanoparticles in mice via different administration routes. , 2017, Nanoscale.

[153]  Czesław Radzewicz,et al.  Ground State Depletion Nanoscopy Resolves Semiconductor Nanowire Barcode Segments at Room Temperature , 2017, Nano letters.

[154]  Xiangliang Yang,et al.  Ultrasmall-Superbright Neodymium-Upconversion Nanoparticles via Energy Migration Manipulation and Lattice Modification: 808 nm-Activated Drug Release. , 2017, ACS nano.

[155]  Deming Liu,et al.  Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy , 2017, Nature.

[156]  H. Dai,et al.  Direct Evidence for Coupled Surface and Concentration Quenching Dynamics in Lanthanide-Doped Nanocrystals. , 2017, Journal of the American Chemical Society.

[157]  Vladimir Lesnyak,et al.  Large scale syntheses of colloidal nanomaterials , 2017 .

[158]  H. Ågren,et al.  Phase angle encoded upconversion luminescent nanocrystals for multiplexing applications. , 2017, Nanoscale.

[159]  Andrew J. Wilson,et al.  Super-Resolution Imaging and Plasmonics. , 2017, Chemical reviews.

[160]  M. Mahmoudi,et al.  Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities. , 2017, Chemical reviews.

[161]  Simone Lamon,et al.  Nanomaterials for optical data storage , 2016 .

[162]  C. Kuang,et al.  Resolution enhancement of saturated fluorescence emission difference microscopy. , 2016, Optics express.

[163]  H. Ebendorff‐Heidepriem,et al.  Upconversion Nanocrystal‐Doped Glass: A New Paradigm for Photonic Materials , 2016 .

[164]  Cheryl A. Tajon,et al.  Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging. , 2016, ACS nano.

[165]  J. Dai,et al.  Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2:Yb3+,Er3+ hybrid core–shell–satellite nanostructures , 2016, Light: Science & Applications.

[166]  I. Rossetti,et al.  Chemical reaction engineering, process design and scale-up issues at the frontier of synthesis: Flow chemistry , 2016 .

[167]  J. Zhao,et al.  Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. , 2016, Nanoscale.

[168]  Paul Raccuglia,et al.  Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.

[169]  Xiaogang Liu,et al.  Nonlinear spectral and lifetime management in upconversion nanoparticles by controlling energy distribution. , 2016, Nanoscale.

[170]  Saulius Juodkazis,et al.  Ultrafast laser processing of materials: from science to industry , 2016, Light: Science & Applications.

[171]  Fan Zhang,et al.  Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence. , 2016, Angewandte Chemie.

[172]  Kai Huang,et al.  Engineering of Lanthanide-Doped Upconversion Nanoparticles for Optical Encoding. , 2016, Small.

[173]  H. Butt,et al.  Near‐Infrared‐Sensitive Materials Based on Upconverting Nanoparticles , 2016, Advanced materials.

[174]  Sailing He,et al.  Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals. , 2016, Optics express.

[175]  Deming Liu,et al.  Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals , 2016, Nature Communications.

[176]  E. Nogales The development of cryo-EM into a mainstream structural biology technique , 2015, Nature Methods.

[177]  Sailing He,et al.  Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy. , 2015, Optics express.

[178]  A. Laromaine,et al.  Scale-up synthesis of iron oxide nanoparticles by microwave-assisted thermal decomposition , 2015 .

[179]  Simon J. Herr,et al.  isoSTED nanoscopy with intrinsic beam alignment. , 2015, Optics express.

[180]  S. K. Vanga,et al.  Subwavelength imaging through ion-beam-induced upconversion , 2015, Nature Communications.

[181]  Xiaowang Liu,et al.  Energy Migration Upconversion in Manganese(II)-Doped Nanoparticles. , 2015, Angewandte Chemie.

[182]  I. Smalyukh,et al.  Mesostructured Composite Materials with Electrically Tunable Upconverting Properties. , 2015, Small.

[183]  Dayong Jin,et al.  Controlling upconversion nanocrystals for emerging applications. , 2015, Nature nanotechnology.

[184]  Zhongpin Zhang,et al.  White-Light Emission from an Integrated Upconversion Nanostructure: Toward Multicolor Displays Modulated by Laser Power. , 2015, Angewandte Chemie.

[185]  M. Davidson,et al.  Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics , 2015, Science.

[186]  S. Hell,et al.  Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics , 2015, Nature Methods.

[187]  B. Giepmans,et al.  Correlated light and electron microscopy: ultrastructure lights up! , 2015, Nature Methods.

[188]  Frederik Görlitz,et al.  STED nanoscopy with fluorescent quantum dots , 2015, Nature Communications.

[189]  A. Polman,et al.  Nanophotonics: Shrinking light-based technology , 2015, Science.

[190]  Xiaoyan Zhang,et al.  Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers , 2015, Nature Communications.

[191]  Yongtian Wang,et al.  Athermally photoreduced graphene oxides for three-dimensional holographic images , 2015, Nature Communications.

[192]  R. Naccache,et al.  The Fluoride Host: Nucleation, Growth, and Upconversion of Lanthanide‐Doped Nanoparticles , 2015 .

[193]  Taeghwan Hyeon,et al.  Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. , 2015, Chemical Society reviews.

[194]  Hans H. Gorris,et al.  Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. , 2015, Chemical Society reviews.

[195]  Wei Feng,et al.  The biosafety of lanthanide upconversion nanomaterials. , 2015, Chemical Society reviews.

[196]  Muthu Kumara Gnanasammandhan Jayakumar,et al.  Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. , 2015, Chemical Society reviews.

[197]  Feng Wang,et al.  Photon upconversion in core-shell nanoparticles. , 2015, Chemical Society reviews.

[198]  Artur Bednarkiewicz,et al.  Upconverting nanoparticles: assessing the toxicity. , 2015, Chemical Society reviews.

[199]  Chun-Hua Yan,et al.  Energy transfer in lanthanide upconversion studies for extended optical applications. , 2015, Chemical Society reviews.

[200]  Wei Huang,et al.  Temporal full-colour tuning through non-steady-state upconversion. , 2015, Nature nanotechnology.

[201]  Sailing He,et al.  Optically investigating Nd(3+)-Yb(3+) cascade sensitized upconversion nanoparticles for high resolution, rapid scanning, deep and damage-free bio-imaging. , 2015, Biomedical optics express.

[202]  Benjamin Thomas,et al.  Enhanced resolution through thick tissue with structured illumination and adaptive optics , 2015, Journal of biomedical optics.

[203]  Kunio Hirata,et al.  Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses , 2014, Nature.

[204]  M. Haase,et al.  Ostwald-ripening and particle size focussing of sub-10 nm NaYF₄ upconversion nanocrystals. , 2014, Nanoscale.

[205]  Xiaogang Liu,et al.  Enhancing luminescence in lanthanide-doped upconversion nanoparticles. , 2014, Angewandte Chemie.

[206]  J. Lippincott-Schwartz,et al.  Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution , 2014, Science.

[207]  Changsen Sun,et al.  980-nm infrared laser modulation of sodium channel kinetics in a neuron cell linearly mediated by photothermal effect , 2014, Journal of biomedical optics.

[208]  D. Ma,et al.  Light Management in Upconverting Nanoparticles: Ultrasmall Core/Shell Architectures to Tune the Emission Color , 2014 .

[209]  Patrick S Doyle,et al.  Universal process-inert encoding architecture for polymer microparticles. , 2014, Nature materials.

[210]  Min Gu,et al.  Optical storage arrays: a perspective for future big data storage , 2014, Light: Science & Applications.

[211]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[212]  Babak Sanii,et al.  Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. , 2014, Nature nanotechnology.

[213]  K. Sugioka,et al.  Ultrafast lasers—reliable tools for advanced materials processing , 2014, Light: Science & Applications.

[214]  P. Prasad,et al.  Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics , 2014, Chemical reviews.

[215]  Peng Zhang,et al.  Enhancing multiphoton upconversion through energy clustering at sublattice level. , 2014, Nature materials.

[216]  J. Paul Robinson,et al.  Tunable lifetime multiplexing using luminescent nanocrystals , 2013, Nature Photonics.

[217]  Min Gu,et al.  Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording , 2013, Scientific Reports.

[218]  J. Dawes,et al.  Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. , 2013, Nature nanotechnology.

[219]  Wei Fan,et al.  Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri‐doped Upconversion Colloidal Nanoparticles at 800 nm , 2013 .

[220]  Qiang Sun,et al.  Mechanistic investigation of photon upconversion in Nd(3+)-sensitized core-shell nanoparticles. , 2013, Journal of the American Chemical Society.

[221]  Liang Yan,et al.  Recent Advances in Design and Fabrication of Upconversion Nanoparticles and Their Safe Theranostic Applications , 2013, Advanced materials.

[222]  Yaoyu Cao,et al.  Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size , 2013, Nature Communications.

[223]  Jaroslaw Jacak,et al.  120 nm resolution and 55 nm structure size in STED-lithography. , 2013, Optics express.

[224]  Jia-Le Shi,et al.  Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals. , 2013, Angewandte Chemie.

[225]  J. Zyss,et al.  Multiphoton upconversion in rare earth doped nanocrystals for sub-diffractive microscopy , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[226]  Xiang Hao,et al.  Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy , 2013, Scientific Reports.

[227]  Erich E Hoover,et al.  Advances in multiphoton microscopy technology , 2013, Nature Photonics.

[228]  Alberto Diaspro,et al.  Polymerization Inhibition by Triplet State Absorption for Nanoscale Lithography , 2013, Advanced materials.

[229]  Rainer Heintzmann,et al.  Line scan--structured illumination microscopy super-resolution imaging in thick fluorescent samples. , 2012, Optics express.

[230]  J. Wrachtrup,et al.  Super-resolution fluorescence quenching microscopy of graphene. , 2012, ACS nano.

[231]  Weihua Zhang,et al.  Large Enhancement of Upconversion Luminescence of NaYF4:Yb3+/Er3+ Nanocrystal by 3D Plasmonic Nano‐Antennas , 2012, Advanced materials.

[232]  Jan C. Hummelen,et al.  Broadband dye-sensitized upconversion of near-infrared light , 2012, Nature Photonics.

[233]  Hari Shroff,et al.  Resolution Doubling in Live, Multicellular Organisms via Multifocal Structured Illumination Microscopy , 2012, Nature Methods.

[234]  J. J. Macklin,et al.  Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution , 2011, Proceedings of the National Academy of Sciences.

[235]  Renren Deng,et al.  Tuning upconversion through energy migration in core-shell nanoparticles. , 2011, Nature materials.

[236]  J. Wrachtrup,et al.  Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles , 2011 .

[237]  Christian Eggeling,et al.  Diffraction-unlimited all-optical imaging and writing with a photochromic GFP , 2011, Nature.

[238]  Wei Feng,et al.  Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. , 2011, Journal of the American Chemical Society.

[239]  Jianhua Hao,et al.  Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films. , 2011, Angewandte Chemie.

[240]  T. Hyeon,et al.  Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. , 2011, Angewandte Chemie.

[241]  Martin Wegener,et al.  Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited] , 2011, 1105.5703.

[242]  S. Hell,et al.  Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores , 2011, Nature Methods.

[243]  X. Zhuang,et al.  Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells , 2010, Cell.

[244]  Juan Wang,et al.  Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. , 2010, Angewandte Chemie.

[245]  R. Ruoff,et al.  Graphene and Graphene Oxide: Synthesis, Properties, and Applications , 2010, Advanced materials.

[246]  Xueyuan Chen,et al.  Upconversion nanoparticles in biological labeling, imaging, and therapy. , 2010, The Analyst.

[247]  Min Gu,et al.  The road to multi-dimensional bit-by-bit optical data storage , 2010 .

[248]  Francisco Sanz-Rodríguez,et al.  Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles. , 2010, Nanoscale.

[249]  C. S. Lim,et al.  Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping , 2010, Nature.

[250]  Chao Zhang,et al.  Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout , 2010, Advanced materials.

[251]  K. Chou,et al.  Subdiffraction-limit two-photon fluorescence microscopy for GFP-tagged cell imaging. , 2009, Biophysical journal.

[252]  Jiaxing Huang,et al.  Visualizing graphene based sheets by fluorescence quenching microscopy. , 2009, Journal of the American Chemical Society.

[253]  Yadong Li,et al.  Upconversion luminescence of monodisperse CaF2:Yb(3+)/Er(3+) nanocrystals. , 2009, Journal of the American Chemical Society.

[254]  S. Hell,et al.  Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. , 2009, Nano letters.

[255]  Shiwei Wu,et al.  Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals , 2009, Proceedings of the National Academy of Sciences.

[256]  Min Gu,et al.  Five-dimensional optical recording mediated by surface plasmons in gold nanorods , 2009, Nature.

[257]  M. Heilemann,et al.  Quantum dot triexciton imaging with three-dimensional subdiffraction resolution. , 2009, Nano letters.

[258]  R. Gattass,et al.  Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization , 2009, Science.

[259]  Robert R McLeod,et al.  Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography , 2009, Science.

[260]  Hsin-Yu Tsai,et al.  Confining Light to Deep Subwavelength Dimensions to Enable Optical Nanopatterning , 2009, Science.

[261]  Xiaogang Liu,et al.  Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. , 2009, Chemical Society reviews.

[262]  S. Hell,et al.  Fluorescence nanoscopy by ground-state depletion and single-molecule return , 2008, Nature Methods.

[263]  Lili Wang,et al.  Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals. , 2008, Optics Express.

[264]  S. Hell,et al.  Spherical nanosized focal spot unravels the interior of cells , 2008, Nature Methods.

[265]  S. Hell,et al.  Video-Rate Far-Field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2008, Science.

[266]  Xiaogang Liu,et al.  Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. , 2008, Journal of the American Chemical Society.

[267]  Ququan Wang,et al.  Controlled synthesis and upconverted avalanche luminescence of cerium(III) and neodymium(III) orthovanadate nanocrystals with high uniformity of size and shape. , 2008, Journal of the American Chemical Society.

[268]  Satoshi Kawata,et al.  High-resolution confocal microscopy by saturated excitation of fluorescence. , 2007, Physical review letters.

[269]  S. Hell,et al.  STED microscopy with continuous wave beams , 2007, Nature Methods.

[270]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[271]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[272]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[273]  Christian Eggeling,et al.  Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[274]  J. Bünzli,et al.  Taking advantage of luminescent lanthanide ions. , 2005, Chemical Society reviews.

[275]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[276]  Volker Westphal,et al.  Nanoscale resolution in the focal plane of an optical microscope. , 2005, Physical review letters.

[277]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[278]  Günter Huber,et al.  Advances in up-conversion lasers based on Er3+ and Pr3+ , 2004 .

[279]  Stefan W. Hell,et al.  Strategy for far-field optical imaging and writing without diffraction limit , 2004 .

[280]  M. Tonelli,et al.  Spectroscopic characterisation of the upconversion avalanche mechanism in Pr3+,Yb3+:BaY2F8 , 2003 .

[281]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[282]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[283]  D. Gamelin,et al.  The role of laser heating in the intrinsic optical bistability of Yb3+-doped bromide lattices , 2000 .

[284]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[285]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[286]  E. Mix,et al.  Avalanche up-conversion processes in Pr, Yb-doped materials , 2000 .

[287]  Schilders,et al.  Limiting Factors on Image Quality in Imaging through Turbid Media under Single-photon and Two-photon Excitation , 2000, Microscopy and Microanalysis.

[288]  Markus P. Hehlen,et al.  Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems , 2000 .

[289]  M. Gu,et al.  Advanced Optical Imaging Theory , 1999 .

[290]  S. Hell,et al.  Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy , 1999, Annalen der Physik.

[291]  V. Centonze,et al.  Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. , 1998, Biophysical journal.

[292]  Pekka Hänninen,et al.  Two- and multiphoton excitation of conjugate-dyes using a continuous wave laser , 1996 .

[293]  R. Macfarlane,et al.  A Three-Color, Solid-State, Three-Dimensional Display , 1996, Science.

[294]  P. Goldner,et al.  Photon avalanche fluorescence and lasers , 1996 .

[295]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[296]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[297]  A. Kueny,et al.  Photon avalanche upconversion laser at 644 nm , 1990 .

[298]  Jay S. Chivian,et al.  The photon avalanche: A new phenomenon in Pr3+‐based infrared quantum counters , 1979 .

[299]  P. Caro,et al.  Interpretation of the optical absorption spectrum and of the paramagnetic susceptibility of neodymium A‐type sesquioxide , 1979 .

[300]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[301]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[302]  J. Liu,et al.  An Overview of Boosting Lanthanide Upconversion Luminescence through Chemical Methods and Physical Strategies , 2022, CrystEngComm.

[303]  J. Elf,et al.  BIOPHYSICS: Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes , 2017 .

[304]  Holger Erfle,et al.  Super-Resolution Microscopy , 2017, Methods in Molecular Biology.

[305]  Antje Sommer,et al.  Principles Of Fluorescence Spectroscopy , 2016 .

[306]  Shubiao Zhang,et al.  Upconversion nanoparticles for bioimaging , 2016 .

[307]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[308]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[309]  Helmut Schäfer,et al.  Upconverting nanoparticles. , 2011, Angewandte Chemie.

[310]  Tommaso Baldacchini,et al.  Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media. , 2009, Journal of biomedical optics.

[311]  Benjamin Harke,et al.  Three-dimensional nanoscopy of colloidal crystals. , 2008, Nano letters.

[312]  F. Lahoz,et al.  Theoretical analysis of the photon avalanche dynamics in Ho 3+ - Yb 3+ codoped systems under near-infrared excitation , 2005 .

[313]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[314]  Tony Wilson,et al.  Principles of Three-Dimensional Imaging in Confocal Microscopes. , 1999 .

[315]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[316]  Maria Goeppert-Mayer Über Elementarakte mit zwei Quantensprüngen , 1931 .