Heuristics in dynamic scheduling: a practical framework with a case study in elevator dispatching

Dynamic scheduling problems are ubiquitous: traffic lights, elevators, planning of manufacturing plants, air traffic control, etc. Tasks have to be put on a timeline as smart as possible to reach certain goals. These goals may be related to production costs, the use of (scarce) resources, deadlines. These problems have often been regarded statically: a schedule is made that seems best for the situation as it is observed now. However, with dynamic problems, the situation changes continually. For example, you may assign passengers to elevators in a manner that seems optimal now, but a new passenger presses a button 3 seconds later, making you think: if I had known this before, I would have made a different schedule. This dissertation is about techniques to make schedules robust and/or flexible. A robust planning stands the tide of change: it only has to be modified slightly when change occurs. A flexible schedule makes it easy for future tasks to be inserted. Robustness and flexibility are two sides of the same medal. One is focused on currently known tasks, the other on future (yet unknown) tasks. The dissertation contains an elaborate case study on elevator dispatching. Various scheduling techniques have been tried, in simulation, on an existing building in Paris, of which detailed passenger data were available. Some of these techniques came out as promising. A remarkably successful technique involved advancing the scheduling horizon. Instead of focusing on individual passengers, this technique focused on elevators as a whole, making them finish whatever they're doing as soon as possible. On short term, this seemed worse for passengers (e.g., more stop overs), but on the long term, the average waiting and travelling times were significantly reduced.

[1]  Michael J. Shaw,et al.  Intelligent Scheduling with Machine Learning Capabilities: The Induction of Scheduling Knowledge§ , 1992 .

[2]  Jean-Charles Billaut,et al.  Multicriteria scheduling , 2005, Eur. J. Oper. Res..

[3]  Bo Chen,et al.  On-line service scheduling , 2009, J. Sched..

[4]  Kay Chen Tan,et al.  A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[5]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[6]  Tapio Tyni,et al.  Evolutionary bi-objective optimisation in the elevator car routing problem , 2006, Eur. J. Oper. Res..

[7]  Chandrasekharan Rajendran,et al.  Efficient dispatching rules for scheduling in a job shop , 1997 .

[8]  Leen Stougie,et al.  On-line Multi-threaded Scheduling , 2003, J. Sched..

[9]  Teodor Gabriel Crainic,et al.  A guided cooperative search for the vehicle routing problem with time windows , 2005, IEEE Intelligent Systems.

[10]  Mohsen Jahangirian,et al.  Intelligent dynamic scheduling system: the application of genetic algorithms , 2000 .

[11]  Emile H. L. Aarts,et al.  Theoretical aspects of local search , 2006, Monographs in Theoretical Computer Science. An EATCS Series.

[12]  Lucio Bianco,et al.  Scheduling models for air traffic control in terminal areas , 2006, J. Sched..

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  Sanja Petrovic,et al.  SURVEY OF DYNAMIC SCHEDULING IN MANUFACTURING SYSTEMS , 2006 .

[15]  Marja-Liisa Siikonen,et al.  Elevator Group Control with Artificial Intelligence , 1997 .

[16]  Pinaki Mazumder,et al.  A genetic approach to standard cell placement using meta-genetic parameter optimization , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[17]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[18]  J. Christopher Beck,et al.  A theoretic and practical framework for scheduling in a stochastic environment , 2009, J. Sched..

[19]  Matthew Brand,et al.  Marginalizing Out Future Passengers in Group Elevator Control , 2003, UAI.

[20]  Emile H. L. Aarts,et al.  Genetic Local Search Algorithms for the Travelling Salesman Problem , 1990, PPSN.

[21]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[22]  J. Sprave A unified model of non-panmictic population structures in evolutionary algorithms , 1999 .

[23]  Ailsa H. Land,et al.  An Automatic Method of Solving Discrete Programming Problems , 1960 .

[24]  John J. Grefenstette,et al.  Genetic Algorithms for the Traveling Salesman Problem , 1985, ICGA.

[25]  Moritoshi Yasunaga,et al.  Implementation of an Effective Hybrid GA for Large-Scale Traveling Salesman Problems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[26]  Fred W. Glover,et al.  Tabu Search , 1997, Handbook of Heuristics.

[27]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[28]  Chandrasekharan Rajendran,et al.  A study on the performance of scheduling rules in buffer-constrained dynamic flowshops , 2002 .

[29]  F. Frank Chen,et al.  The state of the art in intelligent real-time FMS control: a comprehensive survey , 1996, J. Intell. Manuf..

[30]  B. Roy,et al.  Les Problemes d'Ordonnancement , 1967 .

[31]  Jiyin Liu,et al.  Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling , 1993 .

[32]  W. van Norden,et al.  Application of hybrid metaheuristics in sensor management , 2007 .

[33]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[34]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[35]  R.W. Morrison,et al.  A test problem generator for non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[36]  Edmund K. Burke,et al.  Hybrid Variable Neighborhood HyperHeuristics for Exam Timetabling Problems , 2005 .

[37]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[38]  Martin C. Cooper,et al.  The complexity of soft constraint satisfaction , 2006, Artif. Intell..

[39]  A. E. Eiben,et al.  Hybrid evolutionary algorithms for constraint satisfaction problems: memetic overkill? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[40]  Harri Ehtamo,et al.  Optimal control of double-deck elevator group using genetic algorithm , 2003 .

[41]  Peter Cowling,et al.  Production, Manufacturing and Logistics Using real time information for effective dynamic scheduling , 2002 .

[42]  Michael A. Bender,et al.  Scheduling algorithms for procrastinators , 2008, J. Sched..

[43]  Mikkel T. Jensen,et al.  Improving robustness and flexibility of tardiness and total flow-time job shops using robustness measures , 2001, Appl. Soft Comput..

[44]  Wooi Ping Hew,et al.  Development of a self-tuning fuzzy logic controller for intelligent control of elevator systems , 2009, Eng. Appl. Artif. Intell..

[45]  George Q. Huang,et al.  Agent-based modeling of supply chains for distributed scheduling , 2006, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[46]  Matthew Brand,et al.  Decision-Theoretic Group Elevator Scheduling , 2003, ICAPS.

[47]  Sanja Petrovic,et al.  An Introduction to Multiobjective Metaheuristics for Scheduling and Timetabling , 2004, Metaheuristics for Multiobjective Optimisation.

[48]  George C. Runger,et al.  Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.

[49]  Éric D. Taillard,et al.  Parallel iterative search methods for vehicle routing problems , 1993, Networks.

[50]  Risto Lahdelma,et al.  MULTIOBJECTIVE OPTIMIZATION IN ELEVATOR GROUP CONTROL , 2004 .

[51]  Stephen F. Smith,et al.  A Memory Enhanced Evolutionary Algorithm for Dynamic Scheduling Problems , 2008, EvoWorkshops.

[52]  Thomas Stützle,et al.  Local search algorithms for combinatorial problems: analysis, algorithms, and new applications , 1999 .

[53]  Geoffrey E. Hinton,et al.  How Learning Can Guide Evolution , 1996, Complex Syst..

[54]  Harvey M. Sachs Opportunities for Elevator Energy Efficiency Improvements , 2005 .

[55]  Markus Meier,et al.  A NEW ELEVATOR SYSTEM AND ITS IMPLEMENTATION ( * ) Dipl , 2002 .

[56]  Jürgen Branke,et al.  Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation , 2006, IEEE Transactions on Evolutionary Computation.

[57]  Mikkel T. Jensen,et al.  Generating robust and flexible job shop schedules using genetic algorithms , 2003, IEEE Trans. Evol. Comput..

[58]  George F. Luger,et al.  Artificial intelligence - structures and strategies for complex problem solving (2. ed.) , 1993 .

[59]  Andrew G. Barto,et al.  Improving Elevator Performance Using Reinforcement Learning , 1995, NIPS.

[60]  Zoubir Mammeri,et al.  Scheduling in Real-Time Systems , 2002 .

[61]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[62]  Audris Mockus,et al.  Does Code Decay? Assessing the Evidence from Change Management Data , 2001, IEEE Trans. Software Eng..

[63]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[64]  Jürgen Branke *,et al.  Anticipation and flexibility in dynamic scheduling , 2005 .

[65]  Jörg Rambau,et al.  Online-optimization of multi-elevator transport systems with reoptimization algorithms based on set-partitioning models , 2006, Discret. Appl. Math..

[66]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[67]  Sanjay Mehta,et al.  Predictable scheduling of a single machine subject to breakdowns , 1999, Int. J. Comput. Integr. Manuf..

[68]  Michael J. Maher,et al.  Solving Overconstrained Temporal Reasoning Problems , 2001, Australian Joint Conference on Artificial Intelligence.

[69]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[70]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[71]  Reha Uzsoy,et al.  Executing production schedules in the face of uncertainties: A review and some future directions , 2005, Eur. J. Oper. Res..

[72]  Leo G. Kroon,et al.  Actor-agent application for train driver rescheduling , 2009, AAMAS.

[73]  Jana Koehler,et al.  An AI-Based Approach to Destination Control in Elevators , 2002, AI Mag..

[74]  Johannes Cornelis de Jong Advances in Elevator Technology: Sustainable and Energy Implications , 2008 .

[75]  Lars Mönch,et al.  Machine learning techniques for scheduling jobs with incompatible families and unequal ready times on parallel batch machines , 2006, Eng. Appl. Artif. Intell..

[76]  Teodor Gabriel Crainic,et al.  Parallel Strategies for Meta-Heuristics , 2003, Handbook of Metaheuristics.

[77]  Jeffrey W. Herrmann,et al.  Rescheduling Manufacturing Systems: A Framework of Strategies, Policies, and Methods , 2003, J. Sched..

[78]  Chandrasekharan Rajendran,et al.  A comparative study of dispatching rules in dynamic flowshops and jobshops , 1999, Eur. J. Oper. Res..

[79]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[80]  Guochuan Zhang,et al.  On-line scheduling of parallel jobs in a list , 2007, J. Sched..

[81]  Michael H. Goldwasser,et al.  Admission Control with Immediate Notification , 2003, J. Sched..

[82]  Jana Koehler,et al.  Online Synthese von Aufzugssteuerungen als Planungsproblem , 1999, Planen und Konfigurieren.

[83]  Chung Laung Liu,et al.  Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment , 1989, JACM.

[84]  Carlos H. Llanos,et al.  Distributed approach to group control of elevator systems using fuzzy logic and FPGA implementation of dispatching algorithms , 2008, Eng. Appl. Artif. Intell..

[85]  David de la Fuente,et al.  A comparison of machine-learning algorithms for dynamic scheduling of flexible manufacturing systems , 2006, Eng. Appl. Artif. Intell..

[86]  Li Liu,et al.  An adaptive optimization technique for dynamic environments , 2010, Eng. Appl. Artif. Intell..

[87]  Hyung Lee-Kwang,et al.  Design and implementation of a fuzzy elevator group control system , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[88]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[89]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[90]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[91]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[92]  Jürgen Branke,et al.  Faster convergence by means of fitness estimation , 2005, Soft Comput..

[93]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[94]  David S. Johnson,et al.  The Traveling Salesman Problem: A Case Study in Local Optimization , 2008 .