Organic materials database: An open-access online database for data mining

We present an organic materials database (OMDB) hosting thousands of Kohn-Sham electronic band structures, which is freely accessible online at http://omdb.diracmaterials.org. The OMDB focus lies on electronic structure, density of states and other properties for purely organic and organometallic compounds that are known to date. The electronic band structures are calculated using density functional theory for the crystal structures contained in the Crystallography Open Database. The OMDB web interface allows users to retrieve materials with specified target properties using non-trivial queries about their electronic structure. We illustrate the use of the OMDB and how it can become an organic part of search and prediction of novel functional materials via data mining techniques. As a specific example, we provide data mining results for metals and semiconductors, which are known to be rare in the class of organic materials.

[1]  W. Hergert,et al.  The low-temperature magnetostructure and magnetic field response of Pr0.9Ca0.1MnO3: the roles of Pr spins and magnetic phase separation , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Atsushi Arakaki,et al.  Organic & Biomolecular Chemistry , 2015 .

[3]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[4]  M. Klintenberg,et al.  Data mining and accelerated electronic structure theory as a tool in the search for new functional materials , 2008, 0808.2125.

[5]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[6]  R. O. Jones,et al.  Density functional theory: Its origins, rise to prominence, and future , 2015 .

[7]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[8]  Padhraic Smyth,et al.  Deformable Markov model templates for time-series pattern matching , 2000, KDD '00.

[9]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[10]  Saulius Gražulis,et al.  Crystallography Open Database – an open-access collection of crystal structures , 2009, Journal of applied crystallography.

[11]  Eamonn J. Keogh,et al.  A Probabilistic Approach to Fast Pattern Matching in Time Series Databases , 1997, KDD.

[12]  T. Wehling,et al.  Dirac materials , 2014, 1405.5774.

[13]  J. Schwartz,et al.  Organometallics , 1987, Science.

[14]  W. Hergert,et al.  Chromium point defects in hexagonal BaTiO 3 : A comparative study of first-principles calculations and experiments , 2015 .

[15]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[16]  Phillip B. Messersmith,et al.  Bioinspired antifouling polymers , 2005 .

[17]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[18]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[19]  Matthew T. Cole,et al.  Flexible Electronics: The Next Ubiquitous Platform , 2012, Proceedings of the IEEE.

[20]  Tiago F. T. Cerqueira,et al.  Prediction of Stable Nitride Perovskites , 2015 .

[21]  Christoph J. Brabec,et al.  Organic photovoltaics : concepts and realization , 2003 .

[22]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[23]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[24]  Stefano Curtarolo,et al.  High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. , 2011, ACS combinatorial science.

[25]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[26]  Levente Vitos,et al.  Total-energy method based on the exact muffin-tin orbitals theory , 2001 .

[27]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[28]  Stefano Curtarolo,et al.  High-throughput and data mining with ab initio methods , 2004 .

[29]  Stefano de Gironcoli,et al.  Reproducibility in density functional theory calculations of solids , 2016, Science.

[30]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[31]  Adrien Bouhon,et al.  Data Mining for Three-Dimensional Organic Dirac Materials: Focus on Space Group 19 , 2016, Scientific Reports.

[32]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[33]  C. S. Wang,et al.  Density-functional theory of excitation spectra of semiconductors; application to Si , 1983 .

[34]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  Dae-Hyeong Kim,et al.  Flexible and stretchable electronics for biointegrated devices. , 2012, Annual review of biomedical engineering.

[36]  Takehiko Mori,et al.  Focus on Organic Conductors , 2009, Science and technology of advanced materials.

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[39]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[40]  Takamiya Makoto,et al.  Direct Observation of d-Wave Superconducting Gap in κ-(BEDT-TTF)2Cu[N(CN)2]Br with Scanning Tunneling Microscopy , 2008 .

[41]  Stefan Blügel,et al.  Massively parallel density functional calculations for thousands of atoms: KKRnano , 2012 .

[42]  Michael E. Gershenson,et al.  Colloquium : Electronic transport in single-crystal organic transistors , 2006 .

[43]  M. Klintenberg,et al.  Computational Search for Strong Topological Insulators: An Exercise in Data Mining and Electronic Structure , 2014 .

[44]  Kristin A. Persson,et al.  Predicting crystal structures with data mining of quantum calculations. , 2003, Physical review letters.

[45]  Peter Moeck,et al.  Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration , 2011, Nucleic Acids Res..

[46]  J. Yamada,et al.  Tunneling spectroscopy on the organic superconductor κ-(BEDT-TTF) 2 Cu(NCS) 2 using STM , 2001 .

[47]  A. Ernst,et al.  Ab initio angle-resolved photoemission in multiple-scattering formulation , 2001 .

[48]  Alexander Tropsha,et al.  Materials Informatics , 2019, J. Chem. Inf. Model..

[49]  Rudolf Zeller,et al.  Towards a linear-scaling algorithm for electronic structure calculations with the tight-binding Korringa–Kohn–Rostoker Green function method , 2008 .

[50]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[51]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[52]  M. Schlüter,et al.  Self-energy operators and exchange-correlation potentials in semiconductors. , 1988, Physical review. B, Condensed matter.

[53]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[54]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[55]  Y. Iye,et al.  Transport property of an organic conductor α-(BEDT-TTF)2I3 under high pressure: Discovery of a novel type of conductor , 2000 .

[56]  F. Allen,et al.  The crystallographic information file (CIF) : a new standard archive file for crystallography , 1991 .

[57]  N. Ashcroft,et al.  CORRECTIONS TO DENSITY-FUNCTIONAL THEORY BAND GAPS , 1998 .

[58]  R. Geilhufe,et al.  Three-dimensional organic Dirac-line materials due to nonsymmorphic symmetry: A data mining approach , 2016, 1610.07815.

[59]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[60]  Ján Minár,et al.  Calculating condensed matter properties using the KKR-Green's function method—recent developments and applications , 2011 .

[61]  G. Ceder,et al.  Efficient band gap prediction for solids. , 2010, Physical review letters.

[62]  Kristian Sommer Thygesen,et al.  Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides , 2015, 1506.02841.

[63]  A. MacDiarmid,et al.  "Synthetic Metals": A Novel Role for Organic Polymers (Nobel Lecture). , 2001, Angewandte Chemie.

[64]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .