3-D Vision for Navigation and Grasping

In this chapter, we describe algorithms for three-dimensional (3-D ) vision that help robots accomplish navigation and grasping. To model cameras, we start with the basics of perspective projection and distortion due to lenses. This projection from a 3-D world to a two-dimensional (2-D ) image can be inverted only by using information from the world or multiple 2-D views. If we know the 3-D model of an object or the location of 3-D landmarks, we can solve the pose estimation problem from one view. When two views are available, we can compute the 3-D motion and triangulate to reconstruct the world up to a scale factor. When multiple views are given either as sparse viewpoints or a continuous incoming video, then the robot path can be computer and point tracks can yield a sparse 3-D representation of the world. In order to grasp objects, we can estimate 3-D pose of the end effector or 3-D coordinates of the graspable points on the object.

[1]  Oliver Kroemer,et al.  Learning robot grasping from 3-D images with Markov Random Fields , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  David J. Kriegman,et al.  Practical Global Optimization for Multiview Geometry , 2006, International Journal of Computer Vision.

[3]  Gary M. Bone,et al.  Automated modeling and robotic grasping of unknown three-dimensional objects , 2008, 2008 IEEE International Conference on Robotics and Automation.

[4]  S. Shankar Sastry,et al.  Optimization Criteria and Geometric Algorithms for Motion and Structure Estimation , 2001, International Journal of Computer Vision.

[5]  Peter K. Allen,et al.  Pose error robust grasping from contact wrench space metrics , 2012, 2012 IEEE International Conference on Robotics and Automation.

[6]  Kostas Daniilidis,et al.  Linear Pose Estimation from Points or Lines , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Claire Dune,et al.  Active rough shape estimation of unknown objects , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using orthonormal matrices , 1988 .

[9]  A. Jepson,et al.  A fast subspace algorithm for recovering rigid motion , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[10]  Danica Kragic,et al.  Mind the gap - robotic grasping under incomplete observation , 2011, 2011 IEEE International Conference on Robotics and Automation.

[11]  Dimitrios G. Kottas,et al.  Camera-IMU-based localization: Observability analysis and consistency improvement , 2014, Int. J. Robotics Res..

[12]  R. Hartley Triangulation, Computer Vision and Image Understanding , 1997 .

[13]  Thomas S. Huang,et al.  Theory of Reconstruction from Image Motion , 1992 .

[14]  S. Shankar Sastry,et al.  Rank Conditions on the Multiple-View Matrix , 2004, International Journal of Computer Vision.

[15]  Peter K. Allen,et al.  An SVM learning approach to robotic grasping , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[16]  Olivier D. Faugeras,et al.  Some Properties of the E Matrix in Two-View Motion Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Henrik I. Christensen,et al.  Automatic grasp planning using shape primitives , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[18]  Manuel Lopes,et al.  Learning Object Affordances: From Sensory--Motor Coordination to Imitation , 2008, IEEE Transactions on Robotics.

[19]  Peter K. Allen,et al.  Grasp Planning via Decomposition Trees , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[20]  Robert M. Haralick,et al.  Review and analysis of solutions of the three point perspective pose estimation problem , 1994, International Journal of Computer Vision.

[21]  Luc Van Gool,et al.  Stratified Self-Calibration with the Modulus Constraint , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[23]  Michael Beetz,et al.  Robotic grasping of unmodeled objects using time-of-flight range data and finger torque information , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Quoc V. Le,et al.  Grasping novel objects with depth segmentation , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  V. Lepetit,et al.  EPnP: An Accurate O(n) Solution to the PnP Problem , 2009, International Journal of Computer Vision.

[27]  Michael Bosse,et al.  Calibrated, Registered Images of an Extended Urban Area , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[28]  David Nister,et al.  Recent developments on direct relative orientation , 2006 .

[29]  Olivier Faugeras,et al.  Three-Dimensional Computer Vision , 1993 .

[30]  Danica Kragic,et al.  Multivariate discretization for Bayesian Network structure learning in robot grasping , 2011, 2011 IEEE International Conference on Robotics and Automation.

[31]  Long Quan,et al.  Linear N-Point Camera Pose Determination , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Daniel Leidner,et al.  Power grasp planning for anthropomorphic robot hands , 2012, 2012 IEEE International Conference on Robotics and Automation.

[33]  S. Maybank The projective geometry of ambiguous surfaces , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[34]  Richard Szeliski,et al.  Modeling the World from Internet Photo Collections , 2008, International Journal of Computer Vision.

[35]  N. Krüger,et al.  Autonomous Learning of Object-specific Grasp Affordance Densities , 2009 .

[36]  Jörg Stückler,et al.  Real-Time 3D Perception and Efficient Grasp Planning for Everyday Manipulation Tasks , 2011, ECMR.

[37]  Matei T. Ciocarlie,et al.  Contact-reactive grasping of objects with partial shape information , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  Danica Kragic,et al.  Selection of robot pre-grasps using box-based shape approximation , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[39]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[40]  Danica Kragic,et al.  From object categories to grasp transfer using probabilistic reasoning , 2012, 2012 IEEE International Conference on Robotics and Automation.

[41]  Tamim Asfour,et al.  Unions of balls for shape approximation in robot grasping , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[42]  Richard I. Hartley,et al.  Global Optimization through Rotation Space Search , 2009, International Journal of Computer Vision.

[43]  Gregory D. Hager,et al.  Fast and Globally Convergent Pose Estimation from Video Images , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  John Oliensis A New Structure-from-Motion Ambiguity , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Kostas Daniilidis,et al.  On the Quotient Representation for the Essential Manifold , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Joel A. Hesch,et al.  A Direct Least-Squares (DLS) method for PnP , 2011, 2011 International Conference on Computer Vision.

[49]  Nico Blodow,et al.  General 3D modelling of novel objects from a single view , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[50]  Olivier D. Faugeras,et al.  The geometry of multiple images - the laws that govern the formation of multiple images of a scene and some of their applications , 2001 .

[51]  Zuzana Kukelova,et al.  Polynomial Eigenvalue Solutions to Minimal Problems in Computer Vision , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Hongdong Li,et al.  Five-Point Motion Estimation Made Easy , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[53]  Jimmy A. Jørgensen,et al.  Enabling grasping of unknown objects through a synergistic use of edge and surface information , 2012, Int. J. Robotics Res..

[54]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time dynamic 3D surface reconstruction and interaction , 2011, SIGGRAPH '11.

[55]  Oliver Kroemer,et al.  A kernel-based approach to direct action perception , 2012, 2012 IEEE International Conference on Robotics and Automation.

[56]  Stefano Soatto,et al.  Optimal Structure from Motion: Local Ambiguities and Global Estimates , 2004, International Journal of Computer Vision.

[57]  Reinhard Koch,et al.  Visual Modeling with a Hand-Held Camera , 2004, International Journal of Computer Vision.

[58]  Danica Kragic,et al.  Birth of the Object: Detection of Objectness and Extraction of Object Shape through Object-Action complexes , 2008, Int. J. Humanoid Robotics.

[59]  Andreas Geiger,et al.  Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[60]  Zuzana Kukelova,et al.  Polynomial Eigenvalue Solutions to the 5-pt and 6-pt Relative Pose Problems , 2008, BMVC.

[61]  Darius Burschka,et al.  Rigid 3D geometry matching for grasping of known objects in cluttered scenes , 2012, Int. J. Robotics Res..

[62]  Bart C. Nabbe,et al.  An Alternative Formulation for Five Point Relative Pose Problem , 2007, 2007 IEEE Workshop on Motion and Video Computing (WMVC'07).

[63]  Alexander Herzog,et al.  Template-based learning of grasp selection , 2012, 2012 IEEE International Conference on Robotics and Automation.

[64]  Stergios I. Roumeliotis,et al.  Two Efficient Solutions for Visual Odometry Using Directional Correspondence , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.