Transitive Transfer Learning

Transfer learning, which leverages knowledge from source domains to enhance learning ability in a target domain, has been proven effective in various applications. One major limitation of transfer learning is that the source and target domains should be directly related. If there is little overlap between the two domains, performing knowledge transfer between these domains will not be effective. Inspired by human transitive inference and learning ability, whereby two seemingly unrelated concepts can be connected by a string of intermediate bridges using auxiliary concepts, in this paper we study a novel learning problem: Transitive Transfer Learning (abbreviated to TTL). TTL is aimed at breaking the large domain distances and transfer knowledge even when the source and target domains share few factors directly. For example, when the source and target domains are documents and images respectively, TTL could use some annotated images as the intermediate domain to bridge them. To solve the TTL problem, we propose a learning framework to mimic the human learning process. The framework is composed of an intermediate domain selection component and a knowledge transfer component. Extensive empirical evidence shows that the framework yields state-of-the-art classification accuracies on several classification data sets.

[1]  Paul Covington,et al.  Deep Neural Networks for YouTube Recommendations , 2016, RecSys.

[2]  Mehryar Mohri,et al.  Adaptation Algorithm and Theory Based on Generalized Discrepancy , 2014, KDD.

[3]  Oriol Vinyals,et al.  Multilingual Language Processing From Bytes , 2015, NAACL.

[4]  Andrew Y. Ng,et al.  Zero-Shot Learning Through Cross-Modal Transfer , 2013, NIPS.

[5]  Trevor Cohn,et al.  Low Resource Dependency Parsing: Cross-lingual Parameter Sharing in a Neural Network Parser , 2015, ACL.

[6]  Ian Goodfellow,et al.  Deep Learning with Differential Privacy , 2016, CCS.

[7]  Qiang Yang,et al.  Cross Validation Framework to Choose amongst Models and Datasets for Transfer Learning , 2010, ECML/PKDD.

[8]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[9]  Quan Pan,et al.  Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Anton Schwaighofer,et al.  Learning Gaussian Process Kernels via Hierarchical Bayes , 2004, NIPS.

[11]  Murat Dundar,et al.  An Improved Multi-task Learning Approach with Applications in Medical Diagnosis , 2008, ECML/PKDD.

[12]  Ling Bao,et al.  Activity Recognition from User-Annotated Acceleration Data , 2004, Pervasive.

[13]  Kristen Grauman,et al.  Learning with Whom to Share in Multi-task Feature Learning , 2011, ICML.

[14]  Philip S. Yu,et al.  Transfer Learning on Heterogenous Feature Spaces via Spectral Transformation , 2010, 2010 IEEE International Conference on Data Mining.

[15]  Paul Thagard,et al.  A computational model of analogical problem solving , 1989 .

[16]  Andreas Haeberlen,et al.  Practical robust localization over large-scale 802.11 wireless networks , 2004, MobiCom '04.

[17]  Marc'Aurelio Ranzato,et al.  DeViSE: A Deep Visual-Semantic Embedding Model , 2013, NIPS.

[18]  Ya Zhang,et al.  Multi-task learning for boosting with application to web search ranking , 2010, KDD.

[19]  Bianca Zadrozny,et al.  Learning and evaluating classifiers under sample selection bias , 2004, ICML.

[20]  Marilyn A. Walker,et al.  Reinforcement Learning for Spoken Dialogue Systems , 1999, NIPS.

[21]  Claudio Gentile,et al.  Linear Algorithms for Online Multitask Classification , 2010, COLT.

[22]  Apostol Natsev,et al.  YouTube-8M: A Large-Scale Video Classification Benchmark , 2016, ArXiv.

[23]  Marilyn A. Walker,et al.  Trainable Generation of Big-Five Personality Styles through Data-Driven Parameter Estimation , 2008, ACL.

[24]  Xiaodong Liu,et al.  Representation Learning Using Multi-Task Deep Neural Networks for Semantic Classification and Information Retrieval , 2015, NAACL.

[25]  Roger C. Tam,et al.  Manifold Learning of Brain MRIs by Deep Learning , 2013, MICCAI.

[26]  Wei Chu,et al.  A contextual-bandit approach to personalized news article recommendation , 2010, WWW '10.

[27]  Mikkel Baun Kjærgaard,et al.  Hyperbolic Location Fingerprinting: A Calibration-Free Solution for Handling Differences in Signal Strength (concise contribution) , 2008, 2008 Sixth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom).

[28]  Qiang Yang,et al.  Adaptive Localization in a Dynamic WiFi Environment through Multi-view Learning , 2007, AAAI.

[29]  Qiang Yang,et al.  MegaSNPHunter: a learning approach to detect disease predisposition SNPs and high level interactions in genome wide association study , 2009, BMC Bioinformatics.

[30]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[31]  Jianmin Wang,et al.  Transfer Learning with Graph Co-Regularization , 2012, IEEE Transactions on Knowledge and Data Engineering.

[32]  Moni Naor,et al.  Our Data, Ourselves: Privacy Via Distributed Noise Generation , 2006, EUROCRYPT.

[33]  Lawrence Carin,et al.  Logistic regression with an auxiliary data source , 2005, ICML.

[34]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[35]  Shai Ben-David,et al.  Exploiting Task Relatedness for Mulitple Task Learning , 2003, COLT.

[36]  Dit-Yan Yeung,et al.  Multilabel relationship learning , 2013, TKDD.

[37]  Geoffrey E. Hinton,et al.  Zero-shot Learning with Semantic Output Codes , 2009, NIPS.

[38]  Qiang Yang,et al.  SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies , 2009, Bioinform..

[39]  Daniel Hernández-Lobato,et al.  Learning Feature Selection Dependencies in Multi-task Learning , 2013, NIPS.

[40]  Zaher Dawy,et al.  A new multitask learning method for multiorganism gene network estimation , 2008, 2008 IEEE International Symposium on Information Theory.

[41]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[42]  Gary Geunbae Lee,et al.  Multi-domain spoken language understanding with transfer learning , 2009, Speech Commun..

[43]  Dongho Kim,et al.  Incremental on-line adaptation of POMDP-based dialogue managers to extended domains , 2014, INTERSPEECH.

[44]  Gábor Lugosi,et al.  Online Multi-task Learning with Hard Constraints , 2009, COLT.

[45]  Qiang Yang,et al.  Transfer Learning by Structural Analogy , 2011, AAAI.

[46]  Yuan Shi,et al.  Geodesic flow kernel for unsupervised domain adaptation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Guojie Song,et al.  Encoding Tree Sparsity in Multi-Task Learning: A Probabilistic Framework , 2014, AAAI.

[48]  Daniel Roggen,et al.  Recognition of visual memory recall processes using eye movement analysis , 2011, UbiComp '11.

[49]  S. Mahadevan,et al.  Proto-transfer Learning in Markov Decision Processes Using Spectral Methods , 2006 .

[50]  Bing Liu,et al.  Mining Aspect-Specific Opinion using a Holistic Lifelong Topic Model , 2016, WWW.

[51]  Qiang Yang,et al.  Transferring Localization Models across Space , 2008, AAAI.

[52]  David Vandyke,et al.  Multi-domain Neural Network Language Generation for Spoken Dialogue Systems , 2016, NAACL.

[53]  Qiang Yang,et al.  Translated Learning: Transfer Learning across Different Feature Spaces , 2008, NIPS.

[54]  Raymond J. Mooney,et al.  Active Multitask Learning Using Both Latent and Supervised Shared Topics , 2014, SDM.

[55]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[56]  Dacheng Tao,et al.  Bregman Divergence-Based Regularization for Transfer Subspace Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[57]  Dianhai Yu,et al.  Multi-Task Learning for Multiple Language Translation , 2015, ACL.

[58]  John Blitzer,et al.  Domain Adaptation with Structural Correspondence Learning , 2006, EMNLP.

[59]  Jesse Davis,et al.  TODTLER: Two-Order-Deep Transfer Learning , 2015, AAAI.

[60]  Lei Han,et al.  Learning Multi-Level Task Groups in Multi-Task Learning , 2015, AAAI.

[61]  Yaser Al-Onaizan,et al.  Zero-Resource Translation with Multi-Lingual Neural Machine Translation , 2016, EMNLP.

[62]  William-Chandra Tjhi,et al.  Dual Fuzzy-Possibilistic Co-clustering for Document Categorization , 2007 .

[63]  Mladen Kolar,et al.  Distributed Multi-Task Learning , 2016, AISTATS.

[64]  Qiang Yang,et al.  Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study , 2010, BMC Bioinformatics.

[65]  Tong Zhang,et al.  Covering Number Bounds of Certain Regularized Linear Function Classes , 2002, J. Mach. Learn. Res..

[66]  Trevor Darrell,et al.  What you saw is not what you get: Domain adaptation using asymmetric kernel transforms , 2011, CVPR 2011.

[67]  Barbara Caputo,et al.  Learning Categories From Few Examples With Multi Model Knowledge Transfer , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  Jiayu Zhou,et al.  Integrating low-rank and group-sparse structures for robust multi-task learning , 2011, KDD.

[69]  Qiang Yang,et al.  Heterogeneous Transfer Learning for Image Classification , 2011, AAAI.

[70]  Seong-Whan Lee,et al.  Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis , 2014, NeuroImage.

[71]  Shai Ben-David,et al.  A notion of task relatedness yielding provable multiple-task learning guarantees , 2008, Machine Learning.

[72]  Deniz Yuret,et al.  Transfer Learning for Low-Resource Neural Machine Translation , 2016, EMNLP.

[73]  Ivor W. Tsang,et al.  Learning With Augmented Features for Supervised and Semi-Supervised Heterogeneous Domain Adaptation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[74]  Massimiliano Pontil,et al.  Convex multi-task feature learning , 2008, Machine Learning.

[75]  Hwee Tou Ng,et al.  Domain adaptation for semantic role labeling in the biomedical domain , 2010, Bioinform..

[76]  Rama Chellappa,et al.  Generalized Domain-Adaptive Dictionaries , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[77]  T. Trabasso,et al.  Transitive Inferences and Memory in Young Children , 1971, Nature.

[78]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[79]  ChengXiang Zhai,et al.  Instance Weighting for Domain Adaptation in NLP , 2007, ACL.

[80]  Andreas Maurer,et al.  Transfer bounds for linear feature learning , 2009, Machine Learning.

[81]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[82]  Dit-Yan Yeung,et al.  Learning High-Order Task Relationships in Multi-Task Learning , 2013, IJCAI.

[83]  Stefano Ermon,et al.  Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping , 2015, AAAI.

[84]  Xiao-Lei Zhang,et al.  Convex Discriminative Multitask Clustering , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[85]  Jason Weston,et al.  A unified architecture for natural language processing: deep neural networks with multitask learning , 2008, ICML '08.

[86]  David Vandyke,et al.  Policy committee for adaptation in multi-domain spoken dialogue systems , 2015, 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU).

[87]  Giuseppe De Nicolao,et al.  Bayesian Online Multitask Learning of Gaussian Processes , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[88]  Ali Farhadi,et al.  Bidirectional Attention Flow for Machine Comprehension , 2016, ICLR.

[89]  Qiang Yang,et al.  Heterogeneous Transfer Learning for Image Clustering via the SocialWeb , 2009, ACL.

[90]  Andreas Hotho,et al.  The social distributional hypothesis: a pragmatic proxy for homophily in online social networks , 2014, Social Network Analysis and Mining.

[91]  Joelle Pineau,et al.  Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models , 2015, AAAI.

[92]  Steve J. Young,et al.  Bayesian update of dialogue state: A POMDP framework for spoken dialogue systems , 2010, Comput. Speech Lang..

[93]  Jian Zhang,et al.  SQuAD: 100,000+ Questions for Machine Comprehension of Text , 2016, EMNLP.

[94]  Jing Peng,et al.  Latent space domain transfer between high dimensional overlapping distributions , 2009, WWW '09.

[95]  Koby Crammer,et al.  Learning Multiple Tasks using Shared Hypotheses , 2012, NIPS.

[96]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[97]  Andreas Maurer,et al.  The Rademacher Complexity of Linear Transformation Classes , 2006, COLT.

[98]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[99]  Koby Crammer,et al.  Learning Bounds for Domain Adaptation , 2007, NIPS.

[100]  Ivor W. Tsang,et al.  Visual Event Recognition in Videos by Learning from Web Data , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[101]  Oriol Vinyals,et al.  Matching Networks for One Shot Learning , 2016, NIPS.

[102]  Yoshua Bengio,et al.  Show, Attend and Tell: Neural Image Caption Generation with Visual Attention , 2015, ICML.

[103]  Pieter Abbeel,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[104]  Rajat Raina,et al.  Self-taught learning: transfer learning from unlabeled data , 2007, ICML '07.

[105]  Massimiliano Pontil,et al.  Taking Advantage of Sparsity in Multi-Task Learning , 2009, COLT.

[106]  Tom Heskes,et al.  Task Clustering and Gating for Bayesian Multitask Learning , 2003, J. Mach. Learn. Res..

[107]  Xiaocheng Feng,et al.  Target-Dependent Sentiment Classification with Long Short Term Memory , 2015, ArXiv.

[108]  Zhou Yu,et al.  Discriminative coupled dictionary hashing for fast cross-media retrieval , 2014, SIGIR.

[109]  Jia Chen,et al.  Visual Contextual Advertising: Bringing Textual Advertisements to Images , 2010, AAAI.

[110]  Masashi Sugiyama,et al.  Direct Density Ratio Estimation for Large-scale Covariate Shift Adaptation , 2009, J. Inf. Process..

[111]  Jeff G. Schneider,et al.  Generalization Bounds for Transfer Learning under Model Shift , 2015, UAI.

[112]  Philip M. Long,et al.  Online Multitask Learning , 2006, COLT.

[113]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[114]  Antoni B. Chan,et al.  Heterogeneous Multi-task Learning for Human Pose Estimation with Deep Convolutional Neural Network , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[115]  Rui Yan,et al.  How Transferable are Neural Networks in NLP Applications? , 2016, EMNLP.

[116]  Yishay Mansour,et al.  Domain Adaptation: Learning Bounds and Algorithms , 2009, COLT.

[117]  Ricardo Chavarriaga,et al.  The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition , 2013, Pattern Recognit. Lett..

[118]  Austin H. Chen,et al.  A New Multi-Task Learning Technique to Predict Classification of Leukemia and Prostate Cancer , 2010, ICMB.

[119]  Kilian Q. Weinberger,et al.  Marginalized Denoising Autoencoders for Domain Adaptation , 2012, ICML.

[120]  Colin L. Mallows,et al.  A system for LEASE: location estimation assisted by stationary emitters for indoor RF wireless networks , 2004, IEEE INFOCOM 2004.

[121]  Kevin J. Pugh,et al.  Motivational Influences on Transfer , 2006 .

[122]  Samy Bengio,et al.  Zero-Shot Learning by Convex Combination of Semantic Embeddings , 2013, ICLR.

[123]  Peter Stone,et al.  Transfer Learning for Reinforcement Learning Domains: A Survey , 2009, J. Mach. Learn. Res..

[124]  Massimiliano Pontil,et al.  Excess risk bounds for multitask learning with trace norm regularization , 2012, COLT.

[125]  David Zhang,et al.  LSDT: Latent Sparse Domain Transfer Learning for Visual Adaptation , 2016, IEEE Transactions on Image Processing.

[126]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[127]  Alan Fern,et al.  Multi-task reinforcement learning: a hierarchical Bayesian approach , 2007, ICML '07.

[128]  Hong Yan,et al.  Finding Correlated Biclusters from Gene Expression Data , 2011, IEEE Transactions on Knowledge and Data Engineering.

[129]  Manuela M. Veloso,et al.  Conditional random fields for activity recognition , 2007, AAMAS '07.

[130]  Steffen Bickel,et al.  Discriminative learning for differing training and test distributions , 2007, ICML '07.

[131]  Qiang Yang,et al.  Indoor localization in multi-floor environments with reduced effort , 2010, 2010 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[132]  Thomas G. Dietterich,et al.  To transfer or not to transfer , 2005, NIPS 2005.

[133]  Dong Xu,et al.  Exploiting Low-Rank Structure from Latent Domains for Domain Generalization , 2014, ECCV.

[134]  Jinhui Tang,et al.  Weakly-Shared Deep Transfer Networks for Heterogeneous-Domain Knowledge Propagation , 2015, ACM Multimedia.

[135]  Qiang Yang,et al.  Can chinese web pages be classified with english data source? , 2008, WWW.

[136]  Qiang Yang,et al.  Lifelong Machine Learning Systems: Beyond Learning Algorithms , 2013, AAAI Spring Symposium: Lifelong Machine Learning.

[137]  Jieping Ye,et al.  Multi-stage multi-task feature learning , 2012, J. Mach. Learn. Res..

[138]  Qiang Yang,et al.  Transfer learning for collaborative filtering via a rating-matrix generative model , 2009, ICML '09.

[139]  Gunnar Rätsch,et al.  Novel Machine Learning Methods for MHC Class I Binding Prediction , 2010, PRIB.

[140]  Qiang Yang,et al.  Cross-domain sentiment classification via spectral feature alignment , 2010, WWW '10.

[141]  François Laviolette,et al.  A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers , 2013, ICML.

[142]  Yunde Jia,et al.  Cross-View Action Recognition over Heterogeneous Feature Spaces , 2013, ICCV.

[143]  Filip Jurcícek,et al.  Incremental LSTM-based dialog state tracker , 2015, 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU).

[144]  Yonghong Yan,et al.  Markovian discriminative modeling for cross-domain dialog state tracking , 2014, 2014 IEEE Spoken Language Technology Workshop (SLT).

[145]  Ken-ichi Kawarabayashi,et al.  Unsupervised Cross-Domain Word Representation Learning , 2015, ACL.

[146]  Yishay Mansour,et al.  Learning Bounds for Importance Weighting , 2010, NIPS.

[147]  Peter Stone,et al.  Transferring Instances for Model-Based Reinforcement Learning , 2008, ECML/PKDD.

[148]  Jason D. Williams,et al.  The best of both worlds: unifying conventional dialog systems and POMDPs , 2008, INTERSPEECH.

[149]  Daniel L. Silver,et al.  The Parallel Transfer of Task Knowledge Using Dynamic Learning Rates Based on a Measure of Relatedness , 1996, Connect. Sci..

[150]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[151]  Jing Jiang,et al.  Multi-Task Transfer Learning for Weakly-Supervised Relation Extraction , 2009, ACL.

[152]  Qiang Yang,et al.  Query enrichment for web-query classification , 2006, TOIS.

[153]  Jonathan Baxter,et al.  A Bayesian/Information Theoretic Model of Learning to Learn via Multiple Task Sampling , 1997, Machine Learning.

[154]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[155]  Udo Hahn,et al.  Multi-Task Active Learning for Linguistic Annotations , 2008, ACL.

[156]  Peter Stone,et al.  Autonomous transfer for reinforcement learning , 2008, AAMAS.

[157]  Bing Liu,et al.  Lifelong Learning for Sentiment Classification , 2015, ACL.

[158]  Heidi Christensen,et al.  Knowledge transfer between speakers for personalised dialogue management , 2015, SIGDIAL Conference.

[159]  Rama Chellappa,et al.  Subspace Interpolation via Dictionary Learning for Unsupervised Domain Adaptation , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[160]  Alan W. Biermann,et al.  Speech-Graphics Dialogue Systems , 1997, Real Applications@ACL/EACL.

[161]  Ken Perlin,et al.  Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks , 2014, ACM Trans. Graph..

[162]  Sivaraman Balakrishnan,et al.  Optimal kernel choice for large-scale two-sample tests , 2012, NIPS.

[163]  Qiang Yang,et al.  Multitask Learning for Protein Subcellular Location Prediction , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[164]  Feiping Nie,et al.  Cross-language web page classification via dual knowledge transfer using nonnegative matrix tri-factorization , 2011, SIGIR.

[165]  Masashi Sugiyama,et al.  High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso , 2012, Neural Computation.

[166]  Yu Zhang Heterogeneous-Neighborhood-based Multi-Task Local Learning Algorithms , 2013, NIPS.

[167]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[168]  David Vandyke,et al.  Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems , 2015, EMNLP.

[169]  Marc'Aurelio Ranzato,et al.  Sequence Level Training with Recurrent Neural Networks , 2015, ICLR.

[170]  Daphna Weinshall,et al.  Hierarchical Regularization Cascade for Joint Learning , 2013, ICML.

[171]  Alessandro Lazaric,et al.  Bayesian Multi-Task Reinforcement Learning , 2010, ICML.

[172]  Satoru Miyano,et al.  Utilizing Evolutionary Information and Gene Expression Data for Estimating Gene Networks with Bayesian Network Models , 2005, J. Bioinform. Comput. Biol..

[173]  Jean-Philippe Vert,et al.  Clustered Multi-Task Learning: A Convex Formulation , 2008, NIPS.

[174]  Yoshua Bengio,et al.  Deep Learning of Representations for Unsupervised and Transfer Learning , 2011, ICML Unsupervised and Transfer Learning.

[175]  Lei Han,et al.  Multi-Stage Multi-Task Learning with Reduced Rank , 2016, AAAI.

[176]  Koby Crammer,et al.  A theory of learning from different domains , 2010, Machine Learning.

[177]  Ivor W. Tsang,et al.  Hybrid Heterogeneous Transfer Learning through Deep Learning , 2014, AAAI.

[178]  Andreas Maurer,et al.  Bounds for Linear Multi-Task Learning , 2006, J. Mach. Learn. Res..

[179]  Dit-Yan Yeung,et al.  Multi-Task Boosting by Exploiting Task Relationships , 2012, ECML/PKDD.

[180]  Charles A. Micchelli,et al.  On Spectral Learning , 2010, J. Mach. Learn. Res..

[181]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[182]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[183]  Alex Graves,et al.  Playing Atari with Deep Reinforcement Learning , 2013, ArXiv.

[184]  Wolfram Burgard,et al.  Deep reinforcement learning with successor features for navigation across similar environments , 2016, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[185]  Peter Stone,et al.  Value Functions for RL-Based Behavior Transfer: A Comparative Study , 2005, AAAI.

[186]  Yoshimasa Tsuruoka,et al.  A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks , 2016, EMNLP.

[187]  Ilja Kuzborskij,et al.  Stability and Hypothesis Transfer Learning , 2013, ICML.

[188]  Han Liu,et al.  Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery , 2009, ICML '09.

[189]  Ming-Syan Chen,et al.  Transfer Neural Trees for Heterogeneous Domain Adaptation , 2016, ECCV.

[190]  Lantao Yu,et al.  SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient , 2016, AAAI.

[191]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[192]  Michael K. Ng,et al.  Mixed-Transfer: Transfer Learning over Mixed Graphs , 2014, SDM.

[193]  Anestis Fachantidis,et al.  Knowledge transfer in reinforcement learning , 2016 .

[194]  Jason Weston,et al.  Semi-supervised multi-task learning for predicting interactions between HIV-1 and human proteins , 2010, Bioinform..

[195]  Mengjie Zhang,et al.  Domain Generalization for Object Recognition with Multi-task Autoencoders , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[196]  Oliver Lemon,et al.  A Simple and Generic Belief Tracking Mechanism for the Dialog State Tracking Challenge: On the believability of observed information , 2013, SIGDIAL Conference.

[197]  Xinlei Chen,et al.  Never-Ending Learning , 2012, ECAI.

[198]  Ruslan Salakhutdinov,et al.  Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning , 2015, ICLR.

[199]  Jianfeng Gao,et al.  A Persona-Based Neural Conversation Model , 2016, ACL.

[200]  Jianmin Wang,et al.  Dual Transfer Learning , 2012, SDM.

[201]  Doina Precup,et al.  Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning , 1999, Artif. Intell..

[202]  Masashi Sugiyama,et al.  Multi-Task Learning via Conic Programming , 2007, NIPS.

[203]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.

[204]  Samy Bengio,et al.  Show and tell: A neural image caption generator , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[205]  Evgeniy Gabrilovich,et al.  A Review of Relational Machine Learning for Knowledge Graphs , 2015, Proceedings of the IEEE.

[206]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[207]  Marie desJardins,et al.  Portable Option Discovery for Automated Learning Transfer in Object-Oriented Markov Decision Processes , 2015, IJCAI.

[208]  Ivor W. Tsang,et al.  Domain Transfer SVM for video concept detection , 2009, CVPR 2009.

[209]  Jeffrey M. Hausdorff,et al.  Potentials of Enhanced Context Awareness in Wearable Assistants for Parkinson's Disease Patients with the Freezing of Gait Syndrome , 2009, 2009 International Symposium on Wearable Computers.

[210]  Edwin V. Bonilla,et al.  Multi-task Gaussian Process Prediction , 2007, NIPS.

[211]  Xin Wang,et al.  Compressed knowledge transfer via factorization machine for heterogeneous collaborative recommendation , 2015, Knowl. Based Syst..

[212]  Alexei A. Efros,et al.  Undoing the Damage of Dataset Bias , 2012, ECCV.

[213]  Massimiliano Pontil,et al.  Sparse coding for multitask and transfer learning , 2012, ICML.

[214]  Sanja Fidler,et al.  Skip-Thought Vectors , 2015, NIPS.

[215]  Geoffrey Zweig,et al.  Recurrent neural networks for language understanding , 2013, INTERSPEECH.

[216]  Charles A. Micchelli,et al.  Learning Multiple Tasks with Kernel Methods , 2005, J. Mach. Learn. Res..

[217]  Nicu Sebe,et al.  Harnessing Lab Knowledge for Real-World Action Recognition , 2014, International Journal of Computer Vision.

[218]  Qiang Yang,et al.  One-Class Collaborative Filtering , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[219]  Thomas G. Dietterich,et al.  Improving SVM accuracy by training on auxiliary data sources , 2004, ICML.

[220]  Joelle Pineau,et al.  A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues , 2016, AAAI.

[221]  Sebastian Thrun,et al.  Discovering Structure in Multiple Learning Tasks: The TC Algorithm , 1996, ICML.

[222]  Michael I. Jordan,et al.  Learning Transferable Features with Deep Adaptation Networks , 2015, ICML.

[223]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[224]  Matthew Henderson,et al.  Word-Based Dialog State Tracking with Recurrent Neural Networks , 2014, SIGDIAL Conference.

[225]  Neil D. Lawrence,et al.  Learning to learn with the informative vector machine , 2004, ICML.

[226]  Peter Stone,et al.  Deep Recurrent Q-Learning for Partially Observable MDPs , 2015, AAAI Fall Symposia.

[227]  Minghua Chen,et al.  Predicting positive and negative links in signed social networks by transfer learning , 2013, WWW.

[228]  James Henderson,et al.  A Model of Zero-Shot Learning of Spoken Language Understanding , 2015, EMNLP.

[229]  George Trigeorgis,et al.  Domain Separation Networks , 2016, NIPS.

[230]  Brendan Juba,et al.  Estimating relatedness via data compression , 2006, ICML.

[231]  Razvan Pascanu,et al.  Policy Distillation , 2015, ICLR.

[232]  Peng Li,et al.  Similarity Metric Learning for Face Recognition , 2013, 2013 IEEE International Conference on Computer Vision.

[233]  Mikhail Belkin,et al.  Learning privately from multiparty data , 2016, ICML.

[234]  Mengjie Zhang,et al.  Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation , 2016, ECCV.

[235]  Koby Crammer,et al.  Convex Multi-Task Learning by Clustering , 2015, AISTATS.

[236]  Renjie Liao,et al.  Learning Deep Parsimonious Representations , 2016, NIPS.

[237]  Arne Elofsson,et al.  Prediction of MHC class I binding peptides, using SVMHC , 2002, BMC Bioinformatics.

[238]  Qiang Yang,et al.  Cross-Domain Co-Extraction of Sentiment and Topic Lexicons , 2012, ACL.

[239]  Jakob Grue Simonsen,et al.  A Hierarchical Recurrent Encoder-Decoder for Generative Context-Aware Query Suggestion , 2015, CIKM.

[240]  Jieping Ye,et al.  A convex formulation for learning shared structures from multiple tasks , 2009, ICML '09.

[241]  Doina Precup,et al.  Metrics for Finite Markov Decision Processes , 2004, AAAI.

[242]  Trevor Darrell,et al.  Semi-supervised Domain Adaptation with Instance Constraints , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[243]  Qiang Yang,et al.  Transferring Naive Bayes Classifiers for Text Classification , 2007, AAAI.

[244]  Jan Peters,et al.  Reinforcement Learning to Adjust Robot Movements to New Situations , 2010, IJCAI.

[245]  Ambuj Tewari,et al.  Regularization Techniques for Learning with Matrices , 2009, J. Mach. Learn. Res..

[246]  Jieping Ye,et al.  Robust multi-task feature learning , 2012, KDD.

[247]  Paul Tseng,et al.  Trace Norm Regularization: Reformulations, Algorithms, and Multi-Task Learning , 2010, SIAM J. Optim..

[248]  Koby Crammer,et al.  Analysis of Representations for Domain Adaptation , 2006, NIPS.

[249]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[250]  Thomas Plötz,et al.  Deep, Convolutional, and Recurrent Models for Human Activity Recognition Using Wearables , 2016, IJCAI.

[251]  Milica Gasic,et al.  The Hidden Information State model: A practical framework for POMDP-based spoken dialogue management , 2010, Comput. Speech Lang..

[252]  Yann LeCun,et al.  Energy-based Generative Adversarial Network , 2016, ICLR.

[253]  Mike Thelwall,et al.  Biographies or Blenders: Which Resource Is Best for Cross-Domain Sentiment Analysis? , 2012, CICLing.

[254]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[255]  Jens H. Weber,et al.  Privacy Preserving Decision Tree Learning Using Unrealized Data Sets , 2012, IEEE Transactions on Knowledge and Data Engineering.

[256]  Eamonn J. Keogh,et al.  Scaling up dynamic time warping for datamining applications , 2000, KDD '00.

[257]  Shih-Fu Chang,et al.  Cross-domain learning methods for high-level visual concept classification , 2008, 2008 15th IEEE International Conference on Image Processing.

[258]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[259]  Evan Wei Xiang,et al.  Multi‐transfer: Transfer learning with multiple views and multiple sources , 2014, Stat. Anal. Data Min..

[260]  Cynthia Dwork,et al.  Differential Privacy: A Survey of Results , 2008, TAMC.

[261]  Latanya Sweeney,et al.  k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[262]  Lubomir M. Hadjiiski,et al.  Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. , 2016, Medical physics.

[263]  Zhong Ming,et al.  Transfer Learning for Heterogeneous One-Class Collaborative Filtering , 2016, IEEE Intelligent Systems.

[264]  Bernt Schiele,et al.  A tutorial on human activity recognition using body-worn inertial sensors , 2014, CSUR.

[265]  Oren Etzioni,et al.  PRODIGY: an integrated architecture for planning and learning , 1991, SGAR.

[266]  Ivan Laptev,et al.  Learning and Transferring Mid-level Image Representations Using Convolutional Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[267]  Xiangji Huang,et al.  Bi-Transferring Deep Neural Networks for Domain Adaptation , 2016, ACL.

[268]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[269]  Kenneth D. Forbus,et al.  Transfer Learning through Analogy in Games , 2011, AI Mag..

[270]  Qiang Yang,et al.  Action-model acquisition for planning via transfer learning , 2014, Artif. Intell..

[271]  Vitaly Shmatikov,et al.  Privacy-preserving deep learning , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[272]  Arthur B. Markman,et al.  Analogy just looks like high level perception: why a domain-general approach to analogical mapping is right , 1998, J. Exp. Theor. Artif. Intell..

[273]  Martha Larson,et al.  Mining contextual movie similarity with matrix factorization for context-aware recommendation , 2013, TIST.

[274]  Paul Thagard,et al.  Analogical Mapping by Constraint Satisfaction , 1989, Cogn. Sci..

[275]  C. A. Murthy,et al.  Unsupervised Feature Selection Using Feature Similarity , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[276]  Ling Shao,et al.  Cross-Modality Submodular Dictionary Learning for Information Retrieval , 2014, CIKM.

[277]  Kilian Q. Weinberger,et al.  Learning a kernel matrix for nonlinear dimensionality reduction , 2004, ICML.

[278]  Geoffrey J. Gordon,et al.  Relational learning via collective matrix factorization , 2008, KDD.

[279]  Rama Chellappa,et al.  Domain Adaptive Dictionary Learning , 2012, ECCV.

[280]  Aaron C. Courville,et al.  Adversarially Learned Inference , 2016, ICLR.

[281]  Barbara Caputo,et al.  Safety in numbers: Learning categories from few examples with multi model knowledge transfer , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[282]  Svetha Venkatesh,et al.  Nonnegative shared subspace learning and its application to social media retrieval , 2010, KDD.

[283]  Kilian Q. Weinberger,et al.  Gradient boosted feature selection , 2014, KDD.

[284]  Eric Eaton,et al.  Unsupervised Cross-Domain Transfer in Policy Gradient Reinforcement Learning via Manifold Alignment , 2015, AAAI.

[285]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[286]  Léon Bottou,et al.  Towards Principled Methods for Training Generative Adversarial Networks , 2017, ICLR.

[287]  Wynne Hsu,et al.  Mining association rules with multiple minimum supports , 1999, KDD '99.

[288]  Qiang Yang,et al.  Transferring Multi-device Localization Models using Latent Multi-task Learning , 2008, AAAI.

[289]  Trevor Darrell,et al.  Efficient Learning of Domain-invariant Image Representations , 2013, ICLR.

[290]  Hui Li,et al.  Semisupervised Multitask Learning , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[291]  Hal Daumé,et al.  Learning Task Grouping and Overlap in Multi-task Learning , 2012, ICML.

[292]  Bernt Schiele,et al.  What helps where – and why? Semantic relatedness for knowledge transfer , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[293]  M. M. Hassan Mahmud,et al.  Transfer Learning using Kolmogorov Complexity: Basic Theory and Empirical Evaluations , 2007, NIPS.

[294]  Qiang Yang,et al.  Transfer Learning in Collaborative Filtering for Sparsity Reduction , 2010, AAAI.

[295]  Peter Robinson,et al.  Learning an appearance-based gaze estimator from one million synthesised images , 2016, ETRA.

[296]  Qiang Yang,et al.  Domain-constrained semi-supervised mining of tracking models in sensor networks , 2007, KDD '07.

[297]  Roberto Pieraccini,et al.  Learning dialogue strategies within the Markov decision process framework , 1997, 1997 IEEE Workshop on Automatic Speech Recognition and Understanding Proceedings.

[298]  Yi Yao,et al.  Boosting for transfer learning with multiple sources , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[299]  Yang Gao,et al.  Measuring the Distance Between Finite Markov Decision Processes , 2016, AAMAS.

[300]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[301]  Gerhard Weiss,et al.  Reinforcement Learning Transfer Using a Sparse Coded Inter-task Mapping , 2011, EUMAS.

[302]  Janet L. Kolodner,et al.  Case-Based Reasoning , 1989, IJCAI 1989.

[303]  Runze Li,et al.  Statistical Challenges with High Dimensionality: Feature Selection in Knowledge Discovery , 2006, math/0602133.

[304]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[305]  Ivor W. Tsang,et al.  Heterogeneous Domain Adaptation for Multiple Classes , 2014, AISTATS.

[306]  Marilyn A. Walker,et al.  Learning Optimal Dialogue Strategies: A Case Study of a Spoken Dialogue Agent for Email , 1998, COLING-ACL.

[307]  Pietro Perona,et al.  One-shot learning of object categories , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[308]  Dit-Yan Yeung,et al.  A Regularization Approach to Learning Task Relationships in Multitask Learning , 2014, ACM Trans. Knowl. Discov. Data.

[309]  Massimiliano Pontil,et al.  Regularized multi--task learning , 2004, KDD.

[310]  Sebastian Nowozin,et al.  f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization , 2016, NIPS.

[311]  Philip M. Long,et al.  Online Learning of Multiple Tasks with a Shared Loss , 2007, J. Mach. Learn. Res..

[312]  André Elisseeff,et al.  Stability and Generalization , 2002, J. Mach. Learn. Res..

[313]  Marcus Rohrbach,et al.  Translating Videos to Natural Language Using Deep Recurrent Neural Networks , 2014, NAACL.

[314]  Bernhard Hengst,et al.  Discovering Hierarchy in Reinforcement Learning with HEXQ , 2002, ICML.

[315]  Heng Ji,et al.  Incremental Joint Extraction of Entity Mentions and Relations , 2014, ACL.

[316]  Xiaoqian Jiang,et al.  Differentially private distributed logistic regression using private and public data , 2014, BMC Medical Genomics.

[317]  Christopher D. Manning,et al.  Baselines and Bigrams: Simple, Good Sentiment and Topic Classification , 2012, ACL.

[318]  Chris H. Q. Ding,et al.  Orthogonal nonnegative matrix t-factorizations for clustering , 2006, KDD '06.

[319]  Jian Sun,et al.  Identity Mappings in Deep Residual Networks , 2016, ECCV.

[320]  Rong Yan,et al.  Cross-domain video concept detection using adaptive svms , 2007, ACM Multimedia.

[321]  Gunnar Rätsch,et al.  Hierarchical Multitask Structured Output Learning for Large-scale Sequence Segmentation , 2011, NIPS.

[322]  Michael I. Jordan,et al.  Union support recovery in high-dimensional multivariate regression , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[323]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, Discovery Science.

[324]  Andrew W. Moore,et al.  Variable Resolution Dynamic Programming , 1991, ML Workshop.

[325]  Milica Gasic,et al.  POMDP-Based Statistical Spoken Dialog Systems: A Review , 2013, Proceedings of the IEEE.

[326]  Qiang Yang,et al.  Transfer Knowledge between Cities , 2016, KDD.

[327]  Joshua B. Tenenbaum,et al.  One shot learning of simple visual concepts , 2011, CogSci.

[328]  Kristian Kersting,et al.  Transfer Learning via Relational Type Matching , 2015, 2015 IEEE International Conference on Data Mining.

[329]  Shimon Whiteson,et al.  Learning potential functions and their representations for multi-task reinforcement learning , 2013, Autonomous Agents and Multi-Agent Systems.

[330]  Ruslan Salakhutdinov,et al.  Multi-Task Cross-Lingual Sequence Tagging from Scratch , 2016, ArXiv.

[331]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[332]  Christoph H. Lampert,et al.  Lifelong Learning with Non-i.i.d. Tasks , 2015, NIPS.

[333]  Hsin-Hsi Chen,et al.  Exploring Ensemble of Models in Taxonomy-based Cross-Domain Sentiment Classification , 2014, CIKM.

[334]  Fabrice Lefèvre,et al.  k-Nearest Neighbor Monte-Carlo Control Algorithm for POMDP-Based Dialogue Systems , 2009, SIGDIAL Conference.

[335]  Yueting Zhuang,et al.  Supervised Coupled Dictionary Learning with Group Structures for Multi-modal Retrieval , 2013, AAAI.

[336]  Jiaolong Xu,et al.  Domain Adaptation of Deformable Part-Based Models , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[337]  Quoc V. Le,et al.  Multi-task Sequence to Sequence Learning , 2015, ICLR.

[338]  Alessandro Lazaric,et al.  Sequential Transfer in Multi-armed Bandit with Finite Set of Models , 2013, NIPS.

[339]  Rama Chellappa,et al.  Visual Domain Adaptation: A survey of recent advances , 2015, IEEE Signal Processing Magazine.

[340]  Yifan Gong,et al.  Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[341]  Brian C. Lovell,et al.  Unsupervised Domain Adaptation by Domain Invariant Projection , 2013, 2013 IEEE International Conference on Computer Vision.

[342]  Hao Luo,et al.  Cross-Domain Recommendation via Cluster-Level Latent Factor Model , 2013, ECML/PKDD.

[343]  Jie Yin,et al.  Transfer Learning across Networks for Collective Classification , 2013, 2013 IEEE 13th International Conference on Data Mining.

[344]  Andrea Bonarini,et al.  Transfer of samples in batch reinforcement learning , 2008, ICML '08.

[345]  Qiang Yang,et al.  Transfer Learning for Semisupervised Collaborative Recommendation , 2016, TIIS.

[346]  David Vandyke,et al.  Multi-domain Dialog State Tracking using Recurrent Neural Networks , 2015, ACL.

[347]  Sang Michael Xie,et al.  Combining satellite imagery and machine learning to predict poverty , 2016, Science.

[348]  Hui Li,et al.  Multi-task Reinforcement Learning in Partially Observable Stochastic Environments , 2009, J. Mach. Learn. Res..

[349]  Tomas Pfister,et al.  Learning from Simulated and Unsupervised Images through Adversarial Training , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[350]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[351]  G. Tur,et al.  Model adaptation for spoken language understanding , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[352]  Divyakant Agrawal,et al.  Privacy preserving decision tree learning over multiple parties , 2007, Data Knowl. Eng..

[353]  Andrew G. Barto,et al.  Building Portable Options: Skill Transfer in Reinforcement Learning , 2007, IJCAI.

[354]  Fei-Fei Li,et al.  Large-Scale Video Classification with Convolutional Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[355]  Gunnar Rätsch,et al.  Leveraging Sequence Classification by Taxonomy-Based Multitask Learning , 2010, RECOMB.

[356]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[357]  Ivor W. Tsang,et al.  Domain Transfer Multiple Kernel Learning , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[358]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[359]  Patrick Henry Winston,et al.  Learning and reasoning by analogy , 1980, CACM.

[360]  Motoaki Kawanabe,et al.  Direct Importance Estimation with Model Selection and Its Application to Covariate Shift Adaptation , 2007, NIPS.

[361]  Michael I. Jordan,et al.  Deep Transfer Learning with Joint Adaptation Networks , 2016, ICML.

[362]  Bernhard Schölkopf,et al.  Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.

[363]  Jason Williams,et al.  Multi-domain learning and generalization in dialog state tracking , 2013, SIGDIAL Conference.

[364]  Yu Zhang Parallel Multi-task Learning , 2015, 2015 IEEE International Conference on Data Mining.

[365]  Dongho Kim,et al.  Distributed dialogue policies for multi-domain statistical dialogue management , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[366]  Hal Daumé,et al.  Frustratingly Easy Domain Adaptation , 2007, ACL.

[367]  Masashi Sugiyama,et al.  A Transfer Learning Approach and Selective Integration of Multiple Types of Assays for Biological Network Inference , 2010, Int. J. Knowl. Discov. Bioinform..

[368]  Shai Ben-David,et al.  A theoretical framework for learning from a pool of disparate data sources , 2002, KDD.

[369]  Xiaoou Tang,et al.  Facial Landmark Detection by Deep Multi-task Learning , 2014, ECCV.

[370]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[371]  Qiang Yang,et al.  Building bridges for web query classification , 2006, SIGIR.

[372]  Trevor Darrell,et al.  Adapting Visual Category Models to New Domains , 2010, ECCV.

[373]  Lei Zhang,et al.  Generalization Bounds for Domain Adaptation , 2012, NIPS.

[374]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[375]  Jieping Ye,et al.  Learning Incoherent Sparse and Low-Rank Patterns from Multiple Tasks , 2010, TKDD.

[376]  Peter Stone,et al.  Cross-domain transfer for reinforcement learning , 2007, ICML '07.

[377]  Melanie Hilario,et al.  Knowledge and Information Systems , 2007 .

[378]  Marilyn A. Walker,et al.  Individual and Domain Adaptation in Sentence Planning for Dialogue , 2007, J. Artif. Intell. Res..

[379]  Lorenzo Bruzzone,et al.  Domain Adaptation Problems: A DASVM Classification Technique and a Circular Validation Strategy , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[380]  Qiang Yang,et al.  Transfer Learning in Collaborative Filtering with Uncertain Ratings , 2012, AAAI.

[381]  Qiang Yang,et al.  Transfer Learning via Dimensionality Reduction , 2008, AAAI.

[382]  Masashi Sugiyama,et al.  Conic Programming for Multitask Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[383]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[384]  Trevor Darrell,et al.  Factorized Latent Spaces with Structured Sparsity , 2010, NIPS.

[385]  Qiang Yang,et al.  Instilling Social to Physical: Co-Regularized Heterogeneous Transfer Learning , 2016, AAAI.

[386]  Kostas E. Bekris,et al.  Robotics-Based Location Sensing Using Wireless Ethernet , 2002, MobiCom '02.

[387]  Francis R. Bach,et al.  Multi-task regression using minimal penalties , 2011, J. Mach. Learn. Res..

[388]  Yishay Mansour,et al.  Domain Adaptation with Multiple Sources , 2008, NIPS.

[389]  Trevor Darrell,et al.  Deep Domain Confusion: Maximizing for Domain Invariance , 2014, CVPR 2014.

[390]  Gwenn Englebienne,et al.  Accurate activity recognition in a home setting , 2008, UbiComp.

[391]  Jeff G. Schneider,et al.  Learning Multiple Tasks with a Sparse Matrix-Normal Penalty , 2010, NIPS.

[392]  Antonio Torralba,et al.  Learning Aligned Cross-Modal Representations from Weakly Aligned Data , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[393]  Rob Fergus,et al.  Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks , 2015, NIPS.

[394]  Rama Chellappa,et al.  Domain adaptation for object recognition: An unsupervised approach , 2011, 2011 International Conference on Computer Vision.

[395]  Qiang Yang,et al.  Adaptive Temporal Radio Maps for Indoor Location Estimation , 2005, Third IEEE International Conference on Pervasive Computing and Communications.

[396]  Sridhar Mahadevan,et al.  Proto-value Functions: A Laplacian Framework for Learning Representation and Control in Markov Decision Processes , 2007, J. Mach. Learn. Res..

[397]  Raymond J. Mooney,et al.  Learning Relations by Pathfinding , 1992, AAAI.

[398]  Peter Stone,et al.  Improving Action Selection in MDP's via Knowledge Transfer , 2005, AAAI.

[399]  Jingrui He,et al.  A Graphbased Framework for Multi-Task Multi-View Learning , 2011, ICML.

[400]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[401]  Ali Jalali,et al.  A Dirty Model for Multi-task Learning , 2010, NIPS.

[402]  Didier Stricker,et al.  Introducing a New Benchmarked Dataset for Activity Monitoring , 2012, 2012 16th International Symposium on Wearable Computers.

[403]  Joshua B. Tenenbaum,et al.  One-shot learning by inverting a compositional causal process , 2013, NIPS.

[404]  Yunhao Liu,et al.  LANDMARC: Indoor Location Sensing Using Active RFID , 2004, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[405]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[406]  Yoshihiro Yamanishi,et al.  Simultaneous inference of biological networks of multiple species from genome-wide data and evolutionary information: a semi-supervised approach , 2009, Bioinform..

[407]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[408]  Marilyn A. Walker,et al.  Controlling User Perceptions of Linguistic Style: Trainable Generation of Personality Traits , 2011, CL.

[409]  Lawrence Carin,et al.  Multi-Task Learning for Classification with Dirichlet Process Priors , 2007, J. Mach. Learn. Res..

[410]  Amaury Habrard,et al.  A Theoretical Analysis of Metric Hypothesis Transfer Learning , 2015, ICML.

[411]  Ivor W. Tsang,et al.  Domain Adaptation via Transfer Component Analysis , 2009, IEEE Transactions on Neural Networks.

[412]  Z. Jane Wang,et al.  Cross-Domain Object Recognition Via Input-Output Kernel Analysis , 2013, IEEE Transactions on Image Processing.

[413]  Martial Hebert,et al.  Cross-Stitch Networks for Multi-task Learning , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[414]  Shimon Whiteson,et al.  Transfer via inter-task mappings in policy search reinforcement learning , 2007, AAMAS '07.

[415]  Lei Han,et al.  Learning Tree Structure in Multi-Task Learning , 2015, KDD.

[416]  Raef Bassily,et al.  Differentially Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds , 2014, 1405.7085.

[417]  Mario Fritz,et al.  Appearance-based gaze estimation in the wild , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[418]  Takafumi Kanamori,et al.  A Least-squares Approach to Direct Importance Estimation , 2009, J. Mach. Learn. Res..

[419]  Paul M. B. Vitányi,et al.  The Google Similarity Distance , 2004, IEEE Transactions on Knowledge and Data Engineering.

[420]  Yoshua Bengio,et al.  Greedy Layer-Wise Training of Deep Networks , 2006, NIPS.

[421]  Joshua B. Tenenbaum,et al.  Human-level concept learning through probabilistic program induction , 2015, Science.

[422]  Tinne Tuytelaars,et al.  Subspace Alignment Based Domain Adaptation for RCNN Detector , 2015, BMVC.

[423]  Bernhard Schölkopf,et al.  A Kernel Method for the Two-Sample-Problem , 2006, NIPS.

[424]  ChengXiang Zhai,et al.  Cross-Lingual Latent Topic Extraction , 2010, ACL.

[425]  Avishek Saha,et al.  Online Learning of Multiple Tasks and Their Relationships , 2011, AISTATS.

[426]  Matthew Henderson,et al.  Discriminative spoken language understanding using word confusion networks , 2012, 2012 IEEE Spoken Language Technology Workshop (SLT).

[427]  Bruno Castro da Silva,et al.  Learning Parameterized Skills , 2012, ICML.

[428]  Trevor Darrell,et al.  Simultaneous Deep Transfer Across Domains and Tasks , 2015, ICCV.

[429]  Rich Caruana,et al.  Multitask Learning , 1997, Machine Learning.

[430]  Nicu Sebe,et al.  Where am I in the dark: Exploring active transfer learning on the use of indoor localization based on thermal imaging , 2016, Neurocomputing.

[431]  Shai Ben-David,et al.  Multi-task and Lifelong Learning of Kernels , 2015, ALT.

[432]  Fuzhen Zhuang,et al.  Triplex Transfer Learning: Exploiting Both Shared and Distinct Concepts for Text Classification , 2013, IEEE Transactions on Cybernetics.

[433]  E. Thorndike,et al.  The influence of improvement in one mental function upon the efficiency of other functions. II. The estimation of magnitudes. , 1901 .

[434]  Tong Zhang,et al.  A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data , 2005, J. Mach. Learn. Res..

[435]  Wan-Yu Deng,et al.  Cross-person activity recognition using reduced kernel extreme learning machine , 2014, Neural Networks.

[436]  Dinggang Shen,et al.  Deep Learning-Based Feature Representation for AD/MCI Classification , 2013, MICCAI.

[437]  Wanxiang Che,et al.  Exploiting Multi-typed Treebanks for Parsing with Deep Multi-task Learning , 2016, ArXiv.

[438]  Abhinandan Das,et al.  Google news personalization: scalable online collaborative filtering , 2007, WWW '07.

[439]  Noam Chomsky,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[440]  Geoffrey E. Hinton,et al.  Using Generative Models for Handwritten Digit Recognition , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[441]  Jaime G. Carbonell,et al.  A theory of transfer learning with applications to active learning , 2013, Machine Learning.

[442]  Pradeep Ravikumar,et al.  Greedy Algorithms for Structurally Constrained High Dimensional Problems , 2011, NIPS.

[443]  Qiang Yang,et al.  Cross-domain activity recognition , 2009, UbiComp.

[444]  Santosh S. Vempala,et al.  Efficient Representations for Lifelong Learning and Autoencoding , 2014, COLT.

[445]  Daniele Calandriello,et al.  Sparse multi-task reinforcement learning , 2014, Intelligenza Artificiale.

[446]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[447]  Charles A. Micchelli,et al.  When is there a representer theorem? Vector versus matrix regularizers , 2008, J. Mach. Learn. Res..

[448]  Bahram Parvin,et al.  Sparse multitask regression for identifying common mechanism of response to therapeutic targets , 2010, Bioinform..

[449]  Jean-Philippe Vert,et al.  Efficient peptide-MHC-I binding prediction for alleles with few known binders , 2008, Bioinform..

[450]  John Blitzer,et al.  Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification , 2007, ACL.

[451]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[452]  Leon A. Gatys,et al.  Image Style Transfer Using Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[453]  Kevin Knight,et al.  Multi-Source Neural Translation , 2016, NAACL.

[454]  Dit-Yan Yeung,et al.  Multi-Task Learning using Generalized t Process , 2010, AISTATS.

[455]  Jason D. Williams Integrating expert knowledge into POMDP optimization for spoken dialog systems , 2008 .

[456]  Chengqi Zhang,et al.  TrGraph: Cross-Network Transfer Learning via Common Signature Subgraphs , 2015, IEEE Trans. Knowl. Data Eng..

[457]  Andreas Maurer,et al.  Algorithmic Stability and Meta-Learning , 2005, J. Mach. Learn. Res..

[458]  Ivor W. Tsang,et al.  Learning with Augmented Features for Heterogeneous Domain Adaptation , 2012, ICML.

[459]  Jintao Zhang,et al.  Inductive multi-task learning with multiple view data , 2012, KDD.

[460]  Thomas G. Dietterich,et al.  Solving the Multiple Instance Problem with Axis-Parallel Rectangles , 1997, Artif. Intell..

[461]  Daniel Hernández-Lobato,et al.  A Probabilistic Model for Dirty Multi-task Feature Selection , 2015, ICML.

[462]  Yoshua Bengio,et al.  Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach , 2011, ICML.

[463]  Peter Stone,et al.  Behavior transfer for value-function-based reinforcement learning , 2005, AAMAS '05.

[464]  Wanxiang Che,et al.  A Universal Framework for Inductive Transfer Parsing across Multi-typed Treebanks , 2016, COLING.

[465]  Concha Bielza,et al.  Machine Learning in Bioinformatics , 2008, Encyclopedia of Database Systems.

[466]  Geoffrey Zweig,et al.  Spoken language understanding using long short-term memory neural networks , 2014, 2014 IEEE Spoken Language Technology Workshop (SLT).

[467]  Yunming Ye,et al.  Cotransfer Learning Using Coupled Markov Chains with Restart , 2014, IEEE Intelligent Systems.

[468]  Dit-Yan Yeung,et al.  A Convex Formulation for Learning Task Relationships in Multi-Task Learning , 2010, UAI.

[469]  Trevor Darrell,et al.  LSDA: Large Scale Detection through Adaptation , 2014, NIPS.

[470]  Yu Tsao,et al.  Recurrent neural network based language model personalization by social network crowdsourcing , 2013, INTERSPEECH.

[471]  Heng-Tze Cheng,et al.  Wide & Deep Learning for Recommender Systems , 2016, DLRS@RecSys.

[472]  Christoph H. Lampert,et al.  A PAC-Bayesian bound for Lifelong Learning , 2013, ICML.

[473]  Andrew G. Barto,et al.  Automatic Discovery of Subgoals in Reinforcement Learning using Diverse Density , 2001, ICML.

[474]  Tom Schaul,et al.  Successor Features for Transfer in Reinforcement Learning , 2016, NIPS.

[475]  Eric P. Xing,et al.  Multi-population GWA mapping via multi-task regularized regression , 2010, Bioinform..

[476]  Raymond J. Mooney,et al.  Transfer Learning by Mapping with Minimal Target Data , 2008 .

[477]  Jian Pei,et al.  Parallel field alignment for cross media retrieval , 2013, ACM Multimedia.

[478]  Philip S. Yu,et al.  Transfer across Completely Different Feature Spaces via Spectral Embedding , 2013, IEEE Transactions on Knowledge and Data Engineering.

[479]  Lihong Li,et al.  Sample Complexity of Multi-task Reinforcement Learning , 2013, UAI.

[480]  Eunho Yang,et al.  Asymmetric multi-task learning based on task relatedness and loss , 2016, ICML 2016.

[481]  Ben Taskar,et al.  Joint covariate selection and joint subspace selection for multiple classification problems , 2010, Stat. Comput..

[482]  Jiahui Liu,et al.  Personalized news recommendation based on click behavior , 2010, IUI '10.

[483]  Charu C. Aggarwal,et al.  Towards semantic knowledge propagation from text corpus to web images , 2011, WWW.

[484]  Dongho Kim,et al.  POMDP-based dialogue manager adaptation to extended domains , 2013, SIGDIAL Conference.

[485]  Sergey Levine,et al.  Learning modular neural network policies for multi-task and multi-robot transfer , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[486]  Yu Zhang,et al.  Multi-Task Learning and Algorithmic Stability , 2015, AAAI.

[487]  Gunnar Rätsch,et al.  An Empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis , 2008, NIPS.

[488]  Romain Laroche,et al.  Transfer Learning for User Adaptation in Spoken Dialogue Systems , 2016, AAMAS.

[489]  Steve J. Young,et al.  Spoken language understanding using the Hidden Vector State Model , 2006, Speech Commun..

[490]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[491]  Hang Li,et al.  Neural Responding Machine for Short-Text Conversation , 2015, ACL.

[492]  Qiang Yang,et al.  A Survey of Transfer and Multitask Learning in Bioinformatics , 2011, J. Comput. Sci. Eng..

[493]  Henry A. Kautz,et al.  Fine-grained activity recognition by aggregating abstract object usage , 2005, Ninth IEEE International Symposium on Wearable Computers (ISWC'05).

[494]  Qiang Yang,et al.  Transferring Localization Models over Time , 2008, AAAI.

[495]  Yoshua Bengio,et al.  BilBOWA: Fast Bilingual Distributed Representations without Word Alignments , 2014, ICML.

[496]  Edward Kim,et al.  A deep semantic mobile application for thyroid cytopathology , 2016, SPIE Medical Imaging.

[497]  Congfu Xu,et al.  Adaptive Bayesian personalized ranking for heterogeneous implicit feedbacks , 2015, Knowl. Based Syst..

[498]  Aaron Klein,et al.  Efficient and Robust Automated Machine Learning , 2015, NIPS.

[499]  Joelle Pineau,et al.  Generalized Dictionary for Multitask Learning with Boosting , 2016, IJCAI.

[500]  Jonathan Baxter,et al.  A Model of Inductive Bias Learning , 2000, J. Artif. Intell. Res..

[501]  Barbara Caputo,et al.  Multiclass transfer learning from unconstrained priors , 2011, 2011 International Conference on Computer Vision.

[502]  Yongdong Zhang,et al.  Multi-task deep visual-semantic embedding for video thumbnail selection , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[503]  Qiang Yang,et al.  Q2C@UST: our winning solution to query classification in KDDCUP 2005 , 2005, SKDD.

[504]  Qiang Yang,et al.  Can Movies and Books Collaborate? Cross-Domain Collaborative Filtering for Sparsity Reduction , 2009, IJCAI.

[505]  Lawrence Carin,et al.  Semi-Supervised Multitask Learning , 2007, NIPS.

[506]  Jialin Pan,et al.  Feature-based transfer learning with real-world applications , 2010 .

[507]  Aurelie C. Lozano,et al.  Multi-level Lasso for Sparse Multi-task Regression , 2012, ICML.

[508]  Eric Eaton,et al.  Online Multi-Task Learning for Policy Gradient Methods , 2014, ICML.

[509]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[510]  Daniel D. Lee,et al.  Learning High Dimensional Correspondences from Low Dimensional Manifolds , 2003 .

[511]  Chris Drummond,et al.  Accelerating Reinforcement Learning by Composing Solutions of Automatically Identified Subtasks , 2011, J. Artif. Intell. Res..

[512]  Yangyang Shi,et al.  Recurrent neural network language model adaptation with curriculum learning , 2015, Comput. Speech Lang..

[513]  Joseph Antony,et al.  Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[514]  J. Elman Learning and development in neural networks: the importance of starting small , 1993, Cognition.

[515]  Qiang Yang,et al.  Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Transfer Learning to Predict Missing Ratings via Heterogeneous User Feedbacks , 2022 .

[516]  Gokhan Tur,et al.  Multitask Learning for Spoken Language Understanding , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[517]  Ivan Marsic,et al.  Covariate Shift in Hilbert Space: A Solution via Sorrogate Kernels , 2013, ICML.

[518]  Brian C. Lovell,et al.  Domain Adaptation on the Statistical Manifold , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[519]  Dit-Yan Yeung,et al.  Semi-Supervised Multi-Task Regression , 2009, ECML/PKDD.

[520]  Aurélien Garivier,et al.  On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models , 2014, J. Mach. Learn. Res..

[521]  Rama Chellappa,et al.  DASH-N: Joint Hierarchical Domain Adaptation and Feature Learning , 2015, IEEE Transactions on Image Processing.

[522]  Raymond J. Mooney,et al.  Mapping and Revising Markov Logic Networks for Transfer Learning , 2007, AAAI.

[523]  Chang Wang,et al.  Heterogeneous Domain Adaptation Using Manifold Alignment , 2011, IJCAI.

[524]  Andrew Zisserman,et al.  Tabula rasa: Model transfer for object category detection , 2011, 2011 International Conference on Computer Vision.

[525]  Anand D. Sarwate,et al.  Differentially Private Empirical Risk Minimization , 2009, J. Mach. Learn. Res..

[526]  Trevor Darrell,et al.  Adversarial Feature Learning , 2016, ICLR.

[527]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[528]  Alessandro Lazaric,et al.  Transfer in Reinforcement Learning: A Framework and a Survey , 2012, Reinforcement Learning.

[529]  Qiang Yang,et al.  Transfer learning in heterogeneous collaborative filtering domains , 2013, Artif. Intell..

[530]  G. Recanzone Interactions of auditory and visual stimuli in space and time , 2009, Hearing Research.

[531]  Dong Liu,et al.  Tag ranking , 2009, WWW '09.

[532]  Antonio Torralba,et al.  Generating Videos with Scene Dynamics , 2016, NIPS.

[533]  Ronald M. Summers,et al.  Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning , 2016, IEEE Transactions on Medical Imaging.

[534]  Qian Xu,et al.  Probabilistic Multi-Task Feature Selection , 2010, NIPS.

[535]  Trevor Darrell,et al.  Sequence to Sequence -- Video to Text , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[536]  Bernhard Schölkopf,et al.  Correcting Sample Selection Bias by Unlabeled Data , 2006, NIPS.

[537]  Anders Søgaard,et al.  Deep multi-task learning with low level tasks supervised at lower layers , 2016, ACL.

[538]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[539]  Yuan Shi,et al.  Information-Theoretical Learning of Discriminative Clusters for Unsupervised Domain Adaptation , 2012, ICML.

[540]  Yiming Yang,et al.  From Lasso regression to Feature vector machine , 2005, NIPS.

[541]  Rebecca N. Wright,et al.  A Practical Differentially Private Random Decision Tree Classifier , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[542]  Charu C. Aggarwal,et al.  Towards cross-category knowledge propagation for learning visual concepts , 2011, CVPR 2011.

[543]  Edoardo Amaldi,et al.  On the Approximability of Minimizing Nonzero Variables or Unsatisfied Relations in Linear Systems , 1998, Theor. Comput. Sci..

[544]  Vince D. Calhoun,et al.  Deep learning for neuroimaging: a validation study , 2013, Front. Neurosci..

[545]  Pedro M. Domingos,et al.  Deep transfer via second-order Markov logic , 2009, ICML '09.

[546]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[547]  Milica Gasic,et al.  Spoken language understanding from unaligned data using discriminative classification models , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[548]  Qiang Yang,et al.  Protein-protein interaction prediction via Collective Matrix Factorization , 2010, 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[549]  Gerhard Tröster,et al.  Robust Recognition of Reading Activity in Transit Using Wearable Electrooculography , 2009, Pervasive.

[550]  Eric Eaton,et al.  ELLA: An Efficient Lifelong Learning Algorithm , 2013, ICML.

[551]  Kevin D. Ashley Reasoning with Cases and Hypotheticals in HYPO , 1991, Int. J. Man Mach. Stud..

[552]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[553]  Rama Chellappa,et al.  Unsupervised Adaptation Across Domain Shifts by Generating Intermediate Data Representations , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[554]  Roi Reichart,et al.  Neural Structural Correspondence Learning for Domain Adaptation , 2016, CoNLL.

[555]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[556]  Cynthia Dwork,et al.  Calibrating Noise to Sensitivity in Private Data Analysis , 2006, TCC.

[557]  H. Robbins,et al.  Asymptotically efficient adaptive allocation rules , 1985 .

[558]  Larry A. Wasserman,et al.  Union Support Recovery in Multi-task Learning , 2010, J. Mach. Learn. Res..

[559]  A. Valencia,et al.  Text-mining and information-retrieval services for molecular biology , 2005, Genome Biology.

[560]  Thomas Lengauer,et al.  Multi-task learning for HIV therapy screening , 2008, ICML '08.

[561]  Kilian Q. Weinberger,et al.  Large Margin Multi-Task Metric Learning , 2010, NIPS.

[562]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[563]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[564]  Jinbo Bi,et al.  On Multiplicative Multitask Feature Learning , 2014, NIPS.

[565]  James Theiler,et al.  Grafting: Fast, Incremental Feature Selection by Gradient Descent in Function Space , 2003, J. Mach. Learn. Res..

[566]  Michael I. Jordan,et al.  Feature selection for high-dimensional genomic microarray data , 2001, ICML.

[567]  Estevam R. Hruschka,et al.  Toward an Architecture for Never-Ending Language Learning , 2010, AAAI.

[568]  Qiang Yang,et al.  Boosting for transfer learning , 2007, ICML '07.