Algorithmic Game Theory

Weakly acyclic games form a natural generalization of the class of games that have the finite improvement property (FIP). In such games one stipulates that from any initial joint strategy some finite improvement path exists. We classify weakly acyclic games using the concept of a scheduler recently introduced in [1].

[1]  H. Simon,et al.  A Behavioral Model of Rational Choice , 1955 .

[2]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .

[3]  Dan Vilenchik,et al.  Small Clique Detection and Approximate Nash Equilibria , 2009, APPROX-RANDOM.

[4]  J. Tirole The Theory of Industrial Organization , 1988 .

[5]  Xiaotie Deng,et al.  Settling the complexity of computing two-player Nash equilibria , 2007, JACM.

[6]  Qing Guo,et al.  Modeling Bounded Rationality of Agents During Interactions , 2011, Interactive Decision Theory and Game Theory.

[7]  Ari Juels,et al.  Hiding Cliques for Cryptographic Security , 1998, SODA '98.

[8]  Aranyak Mehta,et al.  Progress in approximate nash equilibria , 2007, EC '07.

[9]  The myth of the Folk Theorem , 2010 .

[10]  D. Stahl,et al.  Experimental evidence on players' models of other players , 1994 .

[11]  Ludek Kucera,et al.  Expected Complexity of Graph Partitioning Problems , 1995, Discret. Appl. Math..

[12]  Eitan Zemel,et al.  Nash and correlated equilibria: Some complexity considerations , 1989 .

[13]  Allen Newell,et al.  Human Problem Solving. , 1973 .

[14]  Adrian Vetta,et al.  Nash equilibria in competitive societies, with applications to facility location, traffic routing and auctions , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[15]  Robert Krauthgamer,et al.  How hard is it to approximate the best Nash equilibrium? , 2009, SODA.

[16]  Mark Jerrum,et al.  Large Cliques Elude the Metropolis Process , 1992, Random Struct. Algorithms.

[17]  Aranyak Mehta,et al.  Playing large games using simple strategies , 2003, EC '03.

[18]  R. Selten What is Bounded Rationality? Paper prepared for the Dahlem Conference 1999 , 1999 .

[19]  Claude E. Shannon,et al.  Programming a computer for playing chess , 1950 .

[20]  Béla Bollobás,et al.  Random Graphs , 1985 .

[21]  Richard J. Lipton,et al.  Simple strategies for large zero-sum games with applications to complexity theory , 1994, STOC '94.

[22]  Noga Alon,et al.  Finding a large hidden clique in a random graph , 1998, SODA '98.

[23]  Kristoffer Arnsfelt Hansen,et al.  Approximability and Parameterized Complexity of Minmax Values , 2008, WINE.

[24]  Paul G. Spirakis,et al.  An Optimization Approach for Approximate Nash Equilibria , 2007, WINE.

[25]  Ugur Kuter,et al.  Real-Time A * Search With Depth-k Lookahead ∗ , 2009 .

[26]  U. Feige,et al.  Finding and certifying a large hidden clique in a semirandom graph , 2000 .

[27]  Paul W. Goldberg,et al.  The Complexity of Computing a Nash Equilibrium , 2009, SIAM J. Comput..

[28]  Vincent Conitzer,et al.  Complexity Results about Nash Equilibria , 2002, IJCAI.

[29]  L. Shapley,et al.  Potential Games , 1994 .

[30]  Christos H. Papadimitriou,et al.  Algorithms, Games, and the Internet , 2001, ICALP.

[31]  Berthold Vöcking,et al.  Inapproximability of pure nash equilibria , 2008, STOC.

[32]  Santosh S. Vempala,et al.  Statistical Algorithms and a Lower Bound for Planted Clique , 2012, Electron. Colloquium Comput. Complex..

[33]  Jesfis Peral,et al.  Heuristics -- intelligent search strategies for computer problem solving , 1984 .

[34]  Mark Braverman,et al.  Inapproximability of NP-Complete Variants of Nash Equilibrium , 2011, Theory of Computing.