Non-imaging Medical Data Synthesis for Trustworthy AI: A Comprehensive Survey

Data quality is a key factor in the development of trustworthy AI in healthcare. A large volume of curated datasets with controlled confounding factors can improve the accuracy, robustness, and privacy of downstream AI algorithms. However, access to high-quality datasets is limited by the technical difficulties of data acquisition, and large-scale sharing of healthcare data is hindered by strict ethical restrictions. Data synthesis algorithms, which generate data with distributions similar to real clinical data, can serve as a potential solution to address the scarcity of good quality data during the development of trustworthy AI. However, state-of-the-art data synthesis algorithms, especially deep learning algorithms, focus more on imaging data while neglecting the synthesis of non-imaging healthcare data, including clinical measurements, medical signals and waveforms, and electronic healthcare records (EHRs). Therefore, in this paper, we will review synthesis algorithms, particularly for non-imaging medical data, with the aim of providing trustworthy AI in this domain. This tutorial-style review paper will provide comprehensive descriptions of non-imaging medical data synthesis, covering aspects such as algorithms, evaluations, limitations, and future research directions.

[1]  Naurin Farooq Khan,et al.  Synthetic data generation: State of the art in health care domain , 2023, Comput. Sci. Rev..

[2]  E. Lamine,et al.  MedWGAN based synthetic dataset generation for Uveitis pathology , 2023, Intell. Syst. Appl..

[3]  Debbie Rankin,et al.  Synthetic Tabular Data Evaluation in the Health Domain Covering Resemblance, Utility, and Privacy Dimensions , 2022, Methods of Information in Medicine.

[4]  Scott R. Smith,et al.  Synthetic data in health care: A narrative review , 2023, PLOS digital health.

[5]  Bradley A. Malin,et al.  A Multifaceted benchmarking of synthetic electronic health record generation models , 2022, Nature communications.

[6]  Li Fei-Fei,et al.  Advances, challenges and opportunities in creating data for trustworthy AI , 2022, Nature Machine Intelligence.

[7]  L. Szpruch,et al.  Synthetic Data - what, why and how? , 2022, ArXiv.

[8]  Debbie Rankin,et al.  Synthetic data generation for tabular health records: A systematic review , 2022, Neurocomputing.

[9]  M. Naik,et al.  From Missing Data Imputation to Data Generation , 2022, J. Comput. Sci..

[10]  Sophie J. Nightingale,et al.  AI-synthesized faces are indistinguishable from real faces and more trustworthy , 2022, Proceedings of the National Academy of Sciences.

[11]  Shijian Lu,et al.  Multimodal Image Synthesis and Editing: A Survey , 2022, IEEE transactions on pattern analysis and machine intelligence.

[12]  S. Vimal,et al.  Conquering insufficient/imbalanced data learning for the Internet of Medical Things , 2022, Neural Computing and Applications.

[13]  Wonkeun Jo,et al.  OBGAN: Minority oversampling near borderline with generative adversarial networks , 2022, Expert Syst. Appl..

[14]  Kaley J. Rittichier,et al.  Trustworthy Artificial Intelligence: A Review , 2022, ACM Comput. Surv..

[15]  Sean L. Hill,et al.  Conceptualising fairness: three pillars for medical algorithms and health equity , 2022, BMJ Health & Care Informatics.

[16]  Huaxin Xiao,et al.  SA-CGAN: An oversampling method based on single attribute guided conditional GAN for multi-class imbalanced learning , 2021, Neurocomputing.

[17]  Arif Subhan Centers for Medicare & Medicaid Services , 2021, Journal of Clinical Engineering.

[18]  Hao Luo,et al.  Oversampling by a Constraint-Based Causal Network in Medical Imbalanced Data Classification , 2021, 2021 IEEE International Conference on Multimedia and Expo (ICME).

[19]  Pengjiang Qian,et al.  GAN-Based Medical Images Synthesis , 2021, International Journal of Health Systems and Translational Medicine.

[20]  Prafulla Dhariwal,et al.  Diffusion Models Beat GANs on Image Synthesis , 2021, NeurIPS.

[21]  Min Kyung Lee,et al.  Who Is Included in Human Perceptions of AI?: Trust and Perceived Fairness around Healthcare AI and Cultural Mistrust , 2021, CHI.

[22]  Hongsheng Hu,et al.  Membership Inference Attacks on Machine Learning: A Survey , 2021, ACM Comput. Surv..

[23]  G. Clermont,et al.  Sharing ICU Patient Data Responsibly Under the Society of Critical Care Medicine/European Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam University Medical Centers Database (AmsterdamUMCdb) Example* , 2021, Critical care medicine.

[24]  A. Tucker,et al.  Generating and evaluating cross‐sectional synthetic electronic healthcare data: Preserving data utility and patient privacy , 2021, Comput. Intell..

[25]  Ninghui Li,et al.  PrivSyn: Differentially Private Data Synthesis , 2020, USENIX Security Symposium.

[26]  Dhamanpreet Kaur,et al.  Application of Bayesian networks to generate synthetic health data , 2020, J. Am. Medical Informatics Assoc..

[27]  Jimeng Sun,et al.  EVA: Generating Longitudinal Electronic Health Records Using Conditional Variational Autoencoders , 2020, MLHC.

[28]  Chao Yan,et al.  SynTEG: a framework for temporal structured electronic health data simulation , 2020, J. Am. Medical Informatics Assoc..

[29]  C. Troncoso,et al.  Synthetic Data - Anonymisation Groundhog Day , 2020, USENIX Security Symposium.

[30]  Puja Myles,et al.  Generating high-fidelity synthetic patient data for assessing machine learning healthcare software , 2020, npj Digital Medicine.

[31]  Anna V. Kaluzhnaya,et al.  Bayesian Networks-based personal data synthesis , 2020, GOODTECHS.

[32]  Stefan Lessmann,et al.  Conditional Wasserstein GAN-based Oversampling of Tabular Data for Imbalanced Learning , 2020, Expert Syst. Appl..

[33]  Stanley Kok,et al.  Generating Privacy-Preserving Synthetic Tabular Data Using Oblivious Variational Autoencoders , 2020 .

[34]  Deevakar Rogith,et al.  Generating sequential electronic health records using dual adversarial autoencoder , 2020, J. Am. Medical Informatics Assoc..

[35]  Linda Coyle,et al.  Generation and evaluation of synthetic patient data , 2020, BMC Medical Research Methodology.

[36]  Isabelle Guyon,et al.  Generation and evaluation of privacy preserving synthetic health data , 2020, Neurocomputing.

[37]  Ziqi Zhang,et al.  Generating Electronic Health Records with Multiple Data Types and Constraints , 2020, AMIA.

[38]  Jinsung Yoon,et al.  Anonymization Through Data Synthesis Using Generative Adversarial Networks (ADS-GAN) , 2020, IEEE Journal of Biomedical and Health Informatics.

[39]  Michael I. Jordan,et al.  Decision-Making with Auto-Encoding Variational Bayes , 2020, NeurIPS.

[40]  Jeannette M. Wing Trustworthy AI , 2020, Commun. ACM.

[41]  Eenjun Hwang,et al.  BCGAN-Based Over-Sampling Scheme for Imbalanced Data , 2020, 2020 IEEE International Conference on Big Data and Smart Computing (BigComp).

[42]  E. Fox,et al.  CorGAN: Correlation-Capturing Convolutional Generative Adversarial Networks for Generating Synthetic Healthcare Records , 2020, FLAIRS.

[43]  Xintao Wu,et al.  FairGAN+: Achieving Fair Data Generation and Classification through Generative Adversarial Nets , 2019, 2019 IEEE International Conference on Big Data (Big Data).

[44]  Sebastian Bosse,et al.  EEGSourceSim: A framework for realistic simulation of EEG scalp data using MRI-based forward models and biologically plausible signals and noise , 2019, Journal of Neuroscience Methods.

[45]  M. Kukar,et al.  Diagnosing brain tumours by routine blood tests using machine learning , 2019, Scientific Reports.

[46]  Chao Yan,et al.  Ensuring electronic medical record simulation through better training, modeling, and evaluation , 2019, J. Am. Medical Informatics Assoc..

[47]  Tomas E. Ward,et al.  Synthesis of Realistic ECG using Generative Adversarial Networks , 2019, ArXiv.

[48]  Mario Fritz,et al.  GAN-Leaks: A Taxonomy of Membership Inference Attacks against Generative Models , 2019, CCS.

[49]  Lei Xu,et al.  Modeling Tabular data using Conditional GAN , 2019, NeurIPS.

[50]  Lu Wang,et al.  Continuous Patient-Centric Sequence Generation via Sequentially Coupled Adversarial Learning , 2019, DASFAA.

[51]  Kemal Polat,et al.  A Hybrid Approach to Parkinson Disease Classification Using Speech Signal: The Combination of SMOTE and Random Forests , 2019, 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT).

[52]  Joyita Dutta,et al.  Graph Convolutional Neural Networks For Alzheimer’s Disease Classification , 2019, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).

[53]  Radu State,et al.  Improving Missing Data Imputation with Deep Generative Models , 2019, ArXiv.

[54]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[55]  Yoshua Bengio,et al.  Maximum Entropy Generators for Energy-Based Models , 2019, ArXiv.

[56]  Bo Li,et al.  Differentially Private Data Generative Models , 2018, ArXiv.

[57]  Lei Xu,et al.  Synthesizing Tabular Data using Generative Adversarial Networks , 2018, ArXiv.

[58]  Katherine E Henson,et al.  Risk of Suicide After Cancer Diagnosis in England , 2018, JAMA psychiatry.

[59]  Mihaela van der Schaar,et al.  PATE-GAN: Generating Synthetic Data with Differential Privacy Guarantees , 2018, ICLR.

[60]  Alistair E. W. Johnson,et al.  The eICU Collaborative Research Database, a freely available multi-center database for critical care research , 2018, Scientific Data.

[61]  Mihaela van der Schaar,et al.  GAIN: Missing Data Imputation using Generative Adversarial Nets , 2018, ICML.

[62]  Sushil Jajodia,et al.  Data Synthesis based on Generative Adversarial Networks , 2018, Proc. VLDB Endow..

[63]  Lu Zhang,et al.  FairGAN: Fairness-aware Generative Adversarial Networks , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[64]  Gözde B. Ünal,et al.  Patch-Based Image Inpainting with Generative Adversarial Networks , 2018, ArXiv.

[65]  Fei Wang,et al.  Differentially Private Generative Adversarial Network , 2018, ArXiv.

[66]  Pengtao Xie,et al.  On the Automatic Generation of Medical Imaging Reports , 2017, ACL.

[67]  Jacob Schreiber,et al.  Pomegranate: fast and flexible probabilistic modeling in python , 2017, J. Mach. Learn. Res..

[68]  Cecilia M. Procopiuc,et al.  PrivBayes , 2017 .

[69]  Yu Cheng,et al.  Boosting Deep Learning Risk Prediction with Generative Adversarial Networks for Electronic Health Records , 2017, 2017 IEEE International Conference on Data Mining (ICDM).

[70]  Mark Kramer,et al.  Synthea: An approach, method, and software mechanism for generating synthetic patients and the synthetic electronic health care record , 2017, J. Am. Medical Informatics Assoc..

[71]  Paul Voigt,et al.  The Eu General Data Protection Regulation (Gdpr): A Practical Guide , 2017 .

[72]  Matjaž Kukar,et al.  An application of machine learning to haematological diagnosis , 2017, Scientific Reports.

[73]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[74]  Zhiwei Steven Wu,et al.  Privacy-Preserving Generative Deep Neural Networks Support Clinical Data Sharing , 2017, bioRxiv.

[75]  Bill Howe,et al.  DataSynthesizer: Privacy-Preserving Synthetic Datasets , 2017, SSDBM.

[76]  Haipeng Shen,et al.  Artificial intelligence in healthcare: past, present and future , 2017, Stroke and Vascular Neurology.

[77]  Jaime S. Cardoso,et al.  Transfer Learning with Partial Observability Applied to Cervical Cancer Screening , 2017, IbPRIA.

[78]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[79]  Gunnar Rätsch,et al.  Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs , 2017, ArXiv.

[80]  Charles A. Sutton,et al.  VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning , 2017, NIPS.

[81]  Jimeng Sun,et al.  Generating Multi-label Discrete Patient Records using Generative Adversarial Networks , 2017, MLHC.

[82]  Graham Neubig,et al.  Neural Machine Translation and Sequence-to-sequence Models: A Tutorial , 2017, ArXiv.

[83]  Nagiza F. Samatova,et al.  Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data , 2016, IEEE Transactions on Knowledge and Data Engineering.

[84]  Yu Cheng,et al.  Generative Adversarial Networks as Variational Training of Energy Based Models , 2016, ArXiv.

[85]  Jonathon Shlens,et al.  Conditional Image Synthesis with Auxiliary Classifier GANs , 2016, ICML.

[86]  Vitaly Shmatikov,et al.  Membership Inference Attacks Against Machine Learning Models , 2016, 2017 IEEE Symposium on Security and Privacy (SP).

[87]  Kudakwashe Dube,et al.  Using the CareMap with Health Incidents Statistics for Generating the Realistic Synthetic Electronic Healthcare Record , 2016, 2016 IEEE International Conference on Healthcare Informatics (ICHI).

[88]  Kalyan Veeramachaneni,et al.  The Synthetic Data Vault , 2016, 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[89]  Fernando Nogueira,et al.  Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning , 2016, J. Mach. Learn. Res..

[90]  Christina Thorpe,et al.  COCOA: A Synthetic Data Generator for Testing Anonymization Techniques , 2016, PSD.

[91]  David Riaño,et al.  Simulation-Based Episodes of Care Data Synthetization for Chronic Disease Patients , 2016, KR4HC/ProHealth@HEC.

[92]  Deok-Soo Kim,et al.  Copula-Based Approach to Synthetic Population Generation , 2016, PloS one.

[93]  Uri Kartoun,et al.  A Methodology to Generate Virtual Patient Repositories , 2016, ArXiv.

[94]  Ian Goodfellow,et al.  Deep Learning with Differential Privacy , 2016, CCS.

[95]  J. Schulman,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[96]  Peter Szolovits,et al.  MIMIC-III, a freely accessible critical care database , 2016, Scientific Data.

[97]  Alexander Erath,et al.  A Bayesian network approach for population synthesis , 2015 .

[98]  Lynda L. McGhie,et al.  Health Insurance Portability and Accountability Act (HIPAA) , 2011, Encyclopedia of Information Assurance.

[99]  Kyungmin Su,et al.  The PREP pipeline: standardized preprocessing for large-scale EEG analysis , 2015, Front. Neuroinform..

[100]  Carlos Eduardo Scheidegger,et al.  Certifying and Removing Disparate Impact , 2014, KDD.

[101]  Paul A. Harris,et al.  Secondary use of clinical data: The Vanderbilt approach , 2014, J. Biomed. Informatics.

[102]  Yoshua Bengio,et al.  On the Properties of Neural Machine Translation: Encoder–Decoder Approaches , 2014, SSST@EMNLP.

[103]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[104]  Aaron Roth,et al.  The Algorithmic Foundations of Differential Privacy , 2014, Found. Trends Theor. Comput. Sci..

[105]  Xiaoqian Jiang,et al.  DPSynthesizer: Differentially Private Data Synthesizer for Privacy Preserving Data Sharing , 2014, Proc. VLDB Endow..

[106]  Yves Rosseel,et al.  A Review of fMRI Simulation Studies , 2014, PloS one.

[107]  Jun Zhang,et al.  PrivBayes: private data release via bayesian networks , 2014, SIGMOD Conference.

[108]  Aaron C. Courville,et al.  Generative Adversarial Networks , 2014, 1406.2661.

[109]  Joydeep Ghosh,et al.  Perturbed Gibbs Samplers for Synthetic Data Release , 2013, 1312.5370.

[110]  See-Kiong Ng,et al.  Integrated Oversampling for Imbalanced Time Series Classification , 2013, IEEE Transactions on Knowledge and Data Engineering.

[111]  Joydeep Ghosh,et al.  Perturbed Gibbs Samplers for Generating Large-Scale Privacy-Safe Synthetic Health Data , 2013, 2013 IEEE International Conference on Healthcare Informatics.

[112]  Kudakwashe Dube,et al.  Approach and Method for Generating Realistic Synthetic Electronic Healthcare Records for Secondary Use , 2013, FHIES.

[113]  Frank van Harmelen,et al.  Knowledge-Based Patient Data Generation , 2013, KR4HC/ProHealth.

[114]  Kewei Chen,et al.  Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models , 2013, Front. Neurosci..

[115]  Vince D. Calhoun,et al.  SimTB, a simulation toolbox for fMRI data under a model of spatiotemporal separability , 2012, NeuroImage.

[116]  Abdul V. Roudsari,et al.  Computerization of workflows, guidelines, and care pathways: a review of implementation challenges for process-oriented health information systems , 2011, J. Am. Medical Informatics Assoc..

[117]  Gholam-Ali Hossein-Zadeh,et al.  A mutual information‐based metric for evaluation of fMRI data‐processing approaches , 2011, Human brain mapping.

[118]  Karl J. Friston,et al.  EEG and MEG Data Analysis in SPM8 , 2011, Comput. Intell. Neurosci..

[119]  Anna L. Buczak,et al.  Data-driven approach for creating synthetic electronic medical records , 2010, BMC Medical Informatics Decis. Mak..

[120]  Jörg Drechsler,et al.  Using Support Vector Machines for Generating Synthetic Datasets , 2010, Privacy in Statistical Databases.

[121]  Jerome P. Reiter,et al.  Random Forests for Generating Partially Synthetic, Categorical Data , 2010, Trans. Data Priv..

[122]  Madhav V. Marathe,et al.  Generation and analysis of large synthetic social contact networks , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[123]  Anna L. Buczak,et al.  Construction and Validation of Synthetic Electronic Medical Records , 2009, Online journal of public health informatics.

[124]  Vicenç Torra,et al.  Generation of synthetic data by means of fuzzy c-Regression , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[125]  H. Soltanian-Zadeh,et al.  Mutual Information Based Metric for Evaluation of fMRI Data Processing Approaches , 2009, NeuroImage.

[126]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[127]  Haibo He,et al.  ADASYN: Adaptive synthetic sampling approach for imbalanced learning , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[128]  Ashwin Machanavajjhala,et al.  Privacy: Theory meets Practice on the Map , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[129]  Kunal Talwar,et al.  Mechanism Design via Differential Privacy , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[130]  Martin A. Lindquist,et al.  Modeling state-related fMRI activity using change-point theory , 2007, NeuroImage.

[131]  L. Cox Statistical Disclosure Limitation , 2006 .

[132]  Cynthia Dwork,et al.  Calibrating Noise to Sensitivity in Private Data Analysis , 2006, TCC.

[133]  Hui Han,et al.  Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning , 2005, ICIC.

[134]  Lynda L. McGhie,et al.  THE HEALTH INSURANCE PORTABILITY AND ACCOUNTABILITY ACT , 2004 .

[135]  Jim Burridge,et al.  Information preserving statistical obfuscation , 2003, Stat. Comput..

[136]  Luc Capdevila,et al.  Document , 2003 .

[137]  Leslie G. Ungerleider,et al.  Neural Correlates of Visual Working Memory fMRI Amplitude Predicts Task Performance , 2002, Neuron.

[138]  Gabriele Lohmann,et al.  On Multivariate Spectral Analysis of fMRI Time Series , 2001, NeuroImage.

[139]  Rathindra Sarathy,et al.  A General Additive Data Perturbation Method for Database Security , 1999 .

[140]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[141]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[142]  C. Walck Hand-book on statistical distributions for experimentalists , 1996 .

[143]  G. Moody,et al.  A database to support development and evaluation of intelligent intensive care monitoring , 1996, Computers in Cardiology 1996.

[144]  Wai Lam,et al.  LEARNING BAYESIAN BELIEF NETWORKS: AN APPROACH BASED ON THE MDL PRINCIPLE , 1994, Comput. Intell..

[145]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[146]  M R Nuwer,et al.  Quantitative EEG: I. Techniques and Problems of Frequency Analysis and Topographic Mapping , 1988, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[147]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[148]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[149]  Michael J. Campbell,et al.  Statistics at Square One , 1976, British medical journal.

[150]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[151]  Tahsin Kurc,et al.  Generating Longitudinal Synthetic EHR Data with Recurrent Autoencoders and Generative Adversarial Networks , 2021, Poly/DMAH@VLDB.

[152]  T. Skousen,et al.  Electronic Healthcare Record , 2021, Encyclopedia of Gerontology and Population Aging.

[153]  Wei Chang,et al.  SMOOTH-GAN: Towards Sharp and Smooth Synthetic EHR Data Generation , 2020, AIME.

[154]  Mihaela van der Schaar,et al.  Time-series Generative Adversarial Networks , 2019, NeurIPS.

[155]  Francisco Herrera,et al.  SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary , 2018, J. Artif. Intell. Res..

[156]  et al.,et al.  Missing Data Imputation in the Electronic Health Record Using Deeply Learned Autoencoders , 2017, PSB.

[157]  Jesper Wulff,et al.  Multiple imputation by chained equations in praxis: Guidelines and review , 2017 .

[158]  Paul Voigt,et al.  The EU General Data Protection Regulation (GDPR) , 2017 .

[159]  Stan Matwin,et al.  A Review of Attribute Disclosure Control , 2015, Advanced Research in Data Privacy.

[160]  Xiaoqian Jiang,et al.  Differentially Private Synthesization of Multi-Dimensional Data using Copula Functions , 2014, EDBT.

[161]  Randolph A. Miller,et al.  Reducing patient re-identification risk for laboratory results within research datasets , 2013, J. Am. Medical Informatics Assoc..

[162]  Michael Lin,et al.  Synthetic Data , 2009, Encyclopedia of Database Systems.

[163]  S M Smith,et al.  Overview of fMRI analysis. , 2004, The British journal of radiology.

[164]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[165]  R G Mark,et al.  MIMIC II: a massive temporal ICU patient database to support research in intelligent patient monitoring , 2002, Computers in Cardiology.

[166]  Geoffrey E. Hinton,et al.  Stochastic Neighbor Embedding , 2002, NIPS.

[167]  J Pardey,et al.  A review of parametric modelling techniques for EEG analysis. , 1996, Medical engineering & physics.

[168]  L. M. Hobbs AUTOMATIC GENERATION OF , 1987 .

[169]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[170]  J. Huang,et al.  Creating synthetic minority class samples based on autoencoder extreme learning machine , 2022, Pattern Recognit..