Fast and Robust Low-Rank Approximation for Five-Dimensional Seismic Data Reconstruction

Five-dimensional (5D) seismic data reconstruction becomes more appealing in recent years because it takes advantage of five physical dimensions of the seismic data and can reconstruct data with large gap. The low-rank approximation approach is one of the most effective methods for reconstructing 5D dataset. However, the main disadvantage of the low-rank approximation method is its low computational efficiency because of many singular value decompositions (SVD) of the block Hankel/Toeplitz matrix in the frequency domain. In this paper, we develop an SVD-free low-rank approximation method for efficient and effective reconstruction and denoising of the seismic data that contain four spatial dimensions. Our SVD-free rank constraint model is based on an alternating minimization strategy, which updates one variable each time while fixing the other two. For each update, we only need to solve a linear least-squares problem with much less expensive QR factorization. The SVD-based and SVD-free low-rank approximation methods in the singular spectrum analysis (SSA) framework are compared in detail, regarding the reconstruction performance and computational cost. The comparison shows that the SVD-free low-rank approximation method can obtain similar reconstruction performance as the SVD-based method but with a large computational speedup.

[1]  Sergey Fomel,et al.  Seismic reflection data interpolation with differential offset and shot continuation , 2003 .

[2]  Ali Gholami,et al.  Non‐convex compressed sensing with frequency mask for seismic data reconstruction and denoising , 2014 .

[3]  Yue Li,et al.  Variable-Eccentricity Hyperbolic-Trace TFPF for Seismic Random Noise Attenuation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[4]  R. Abma,et al.  3D interpolation of irregular data with a POCS algorithm , 2006 .

[5]  Stanley Osher,et al.  Monte Carlo data-driven tight frame for seismic data recovery , 2016 .

[6]  Mauricio D. Sacchi,et al.  Convergence improvement and noise attenuation considerations for beyond alias projection onto convex sets reconstruction , 2013 .

[7]  Min Bai,et al.  A structural rank reduction operator for removing artifacts in least-squares reverse time migration , 2018, Comput. Geosci..

[8]  D. J. Verschuur,et al.  Surface-related multiple elimination, an inversion approach , 1991 .

[9]  Shaohuan Zu,et al.  Low-frequency noise attenuation in seismic and microseismic data using mathematical morphological filtering , 2017, Geophysical Journal International.

[10]  Y. Chen,et al.  Compressive sensing for seismic data reconstruction via fast projection onto convex sets based on seislet transform , 2016 .

[11]  Mauricio D. Sacchi,et al.  Interpolation and denoising of high-dimensional seismic data by learning a tight frame , 2015 .

[12]  Mauricio D. Sacchi,et al.  Multidimensional de-aliased Cadzow reconstruction of seismic records , 2013 .

[13]  Stewart Trickett Preserving signal: Automatic rank determination for noise suppression , 2015 .

[14]  S. Qu,et al.  Velocity analysis of simultaneous-source data using high-resolution semblance—coping with the strong noise , 2016 .

[15]  Anat Canning,et al.  Reducing 3-D acquisition footprint for 3-D DMO and 3-D prestack migration , 1998 .

[16]  Yangkang Chen,et al.  Double Least-Squares Projections Method for Signal Estimation , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Yangkang Chen,et al.  Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint , 2015, IEEE Geoscience and Remote Sensing Letters.

[18]  Yangkang Chen,et al.  Random noise attenuation using local signal-and-noise orthogonalization , 2015 .

[19]  Mauricio D. Sacchi,et al.  Five-Dimensional Seismic Reconstruction Using Parallel Square Matrix Factorization , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Yufeng Wang,et al.  Three-Operator Proximal Splitting Scheme for 3-D Seismic Data Reconstruction , 2017, IEEE Geoscience and Remote Sensing Letters.

[21]  Daniel Trad,et al.  Five-dimensional interpolation: Recovering from acquisition constraints , 2009 .

[22]  Min Bai,et al.  Five-dimensional seismic data reconstruction using the optimally damped rank-reduction method , 2019, Geophysical Journal International.

[23]  D. Trad A Strategy For Wide Azimuth Land Interpolation , 2007 .

[24]  Jianwei Ma,et al.  Intelligent interpolation by Monte Carlo machine learning , 2018 .

[25]  Mokhtar Mohammadi,et al.  Seismic Random Noise Attenuation Using Synchrosqueezed Wavelet Transform and Low-Rank Signal Matrix Approximation , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Mauricio D. Sacchi,et al.  Multicomponent f-x seismic random noise attenuation via vector autoregressive operators , 2012 .

[27]  Siyuan Cao,et al.  One-Step Slope Estimation for Dealiased Seismic Data Reconstruction via Iterative Seislet Thresholding , 2016, IEEE Geoscience and Remote Sensing Letters.

[28]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[29]  Min Bai,et al.  Adaptive rank-reduction method for seismic data reconstruction , 2018 .

[30]  Wei Xu,et al.  A fast SVD for multilevel block Hankel matrices with minimal memory storage , 2015, Numerical Algorithms.

[31]  Yangkang Chen,et al.  Simultaneous denoising and interpolation of 2D seismic data using data-driven non-negative dictionary learning , 2017, Signal Process..

[32]  Shuaiqi Liu,et al.  Hankel Low-Rank Approximation for Seismic Noise Attenuation , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Felix J. Herrmann,et al.  Non-parametric seismic data recovery with curvelet frames , 2008 .

[34]  Mauricio D. Sacchi,et al.  Surface-Consistent Sparse Multichannel Blind Deconvolution of Seismic Signals , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Mauricio D. Sacchi,et al.  Minimum weighted norm interpolation of seismic records , 2004 .

[36]  S. Mostafa Mousavi,et al.  Automatic noise-removal/signal-removal based on general cross-validation thresholding in synchrosqueezed domain and its application on earthquake data , 2017 .

[37]  Jinghuai Gao,et al.  Seismic Simultaneous Source Separation via Patchwise Sparse Representation , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Dirk Gajewski,et al.  5-D interpolation with wave-front attributes , 2017 .

[39]  David L. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4/sqrt(3) , 2013, 1305.5870.

[40]  Yin Zhang,et al.  Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.

[41]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[42]  Yatong Zhou,et al.  Empirical Low-Rank Approximation for Seismic Noise Attenuation , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Dong Zhang,et al.  Seismic noise attenuation using an online subspace tracking algorithm , 2018, Geophysical Journal International.

[44]  Xiao Pan,et al.  Iterative deblending of simultaneous-source data using a coherency-pass shaping operator , 2017 .

[45]  Yangkang Chen,et al.  Multi-step damped multichannel singular spectrum analysis for simultaneous reconstruction and denoising of 3D seismic data , 2016 .

[46]  Jingjie Cao,et al.  Recovery of seismic wavefields based on compressive sensing by an l1-norm constrained trust region method and the piecewise random subsampling , 2011, Geophysical Journal International.

[47]  Yangkang Chen,et al.  Seismic Noise Attenuation Using Unsupervised Sparse Feature Learning , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[48]  S. Mostafa Mousavi,et al.  Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding , 2016 .

[49]  Mauricio D. Sacchi,et al.  Fast dual-domain reduced-rank algorithm for 3D deblending via randomized QR decomposition , 2016 .

[50]  Benfeng Wang,et al.  Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform , 2015 .

[51]  Qiang Zhao,et al.  Signal-Preserving Erratic Noise Attenuation via Iterative Robust Sparsity-Promoting Filter , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Weilin Huang,et al.  Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method , 2016 .

[53]  Jing M. Chen,et al.  Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods , 1995, IEEE Trans. Geosci. Remote. Sens..

[54]  Jingwei Hu,et al.  Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization , 2014 .

[55]  Shaohuan Zu,et al.  Interpolating Big Gaps Using Inversion With Slope Constraint , 2016, IEEE Geoscience and Remote Sensing Letters.

[56]  Changchun Yang,et al.  A review on restoration of seismic wavefields based on regularization and compressive sensing , 2011 .

[57]  Mauricio D. Sacchi,et al.  Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data , 2010 .

[58]  Jianwei Ma,et al.  What can machine learning do for seismic data processing? An interpolation application , 2017 .

[59]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[60]  Yangkang Chen,et al.  Damped multichannel singular spectrum analysis for 3D random noise attenuation , 2015, GEOPHYSICS.

[61]  Mauricio D. Sacchi,et al.  Parallel matrix factorization algorithm and its application to 5D seismic reconstruction and denoising , 2015 .

[62]  Farid Melgani,et al.  Missing-Area Reconstruction in Multispectral Images Under a Compressive Sensing Perspective , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[63]  Guochang Liu,et al.  Random noise attenuation using f-x regularized nonstationary autoregression , 2012 .

[64]  Michael Elad,et al.  Image Sequence Denoising via Sparse and Redundant Representations , 2009, IEEE Transactions on Image Processing.

[65]  A. Böttcher,et al.  Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis , 2000 .

[66]  A. Stanton,et al.  Processing seismic data in the presence of residual statics , 2013 .

[67]  S. Spitz Seismic trace interpolation in the F-X domain , 1991 .

[68]  Mauricio D. Sacchi,et al.  A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions , 2013 .

[69]  Jianwei Ma,et al.  Simultaneous dictionary learning and denoising for seismic data , 2014 .

[70]  M. Aharchaou,et al.  Singular-spectrum analysis via optimal shrinkage of singular values , 2017 .

[71]  Joshua Ronen,et al.  Wave‐equation trace interpolation , 1987 .