Text, Speech, and Dialogue: 23rd International Conference, TSD 2020, Brno, Czech Republic, September 8–11, 2020, Proceedings

Traditionally, there has been a disconnect between custombuilt applications used to solve real-world information extraction problems in industry, and automated learning-based approaches developed in academia. Despite approaches such as transfer-based learning, adapting these to more customised solutions where the task and data may be different, and where training data may be largely unavailable, is still hugely problematic, with the result that many systems still need to be custom-built using expert hand-crafted knowledge, and do not scale. In the legal domain, a traditional slow adopter of technology, black box machine learning-based systems are too untrustworthy to be widely used. In industrial settings, the fine-grained highly specialised knowledge of human experts is still critical, and it is not obvious how to integrate this into automated classification systems. In this paper, we examine two case studies from recent work combining this expert human knowledge with automated NLP technologies.

[1]  Takuya Akiba,et al.  Optuna: A Next-generation Hyperparameter Optimization Framework , 2019, KDD.

[2]  Dong Yu,et al.  Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[3]  Manish Shrivastava,et al.  ConfNet2Seq: Full Length Answer Generation from Spoken Questions , 2020, TDS.

[4]  Kateřina Chládková,et al.  Spectral and temporal characteristics of Czech vowels in spontaneous speech , 2019, AUC PHILOLOGICA.

[5]  Robin J. Lickley,et al.  Disfluency in typical and stuttered speech , 2017 .

[6]  Natalia Levshina,et al.  Token-based typology and word order entropy: A study based on Universal Dependencies , 2019, Linguistic Typology.

[7]  Yun-Nung Chen,et al.  What Does This Word Mean? Explaining Contextualized Embeddings with Natural Language Definition , 2019, EMNLP.

[8]  James F. Allen,et al.  Actions and Events in Interval Temporal Logic , 1994, J. Log. Comput..

[9]  Prasanta Kumar Ghosh,et al.  An error correction scheme for GCI detection algorithms using pitch smoothness criterion , 2015, INTERSPEECH.

[10]  Ruslan Salakhutdinov,et al.  Gated-Attention Readers for Text Comprehension , 2016, ACL.

[11]  Mona Attariyan,et al.  Parameter-Efficient Transfer Learning for NLP , 2019, ICML.

[12]  Hung-yi Lee,et al.  Spoken SQuAD: A Study of Mitigating the Impact of Speech Recognition Errors on Listening Comprehension , 2018, INTERSPEECH.

[13]  Prasanta Kumar Ghosh,et al.  PSFM—A Probabilistic Source Filter Model for Noise Robust Glottal Closure Instant Detection , 2018, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[14]  Cvetana Krstev AN ALIGNED ENGLISH-SERBIAN CORPUS , 2011 .

[15]  George Grey,et al.  Nga mahi a nga tupuna , 1971 .

[16]  Ted Briscoe,et al.  The BEA-2019 Shared Task on Grammatical Error Correction , 2019, BEA@ACL.

[17]  Marco Passarotti,et al.  Visual Exploration of Latin Derivational Morphology , 2017, FLAIRS.

[18]  György Szaszák,et al.  Investigation on N-gram Approximated RNNLMs for Recognition of Morphologically Rich Speech , 2019, SLSP.

[19]  Roberts Rozis,et al.  Tilde MODEL - Multilingual Open Data for EU Languages , 2017, NODALIDA.

[20]  Francesco Caltagirone,et al.  Snips Voice Platform: an embedded Spoken Language Understanding system for private-by-design voice interfaces , 2018, ArXiv.

[21]  Merel Keijzer,et al.  The Oxford Handbook of Language Attrition : Part II: Psycholinguistics and Neurolinguistic Approaches to Language Attrition , 2019 .

[22]  Tobias Baur,et al.  Towards Somaesthetic Smarthome Designs: Exploring Potentials and Limitations of an Affective Mirror , 2019, IOT.

[23]  Markéta Juzová On the Comparison of Different Phrase Boundary Detection Approaches Trained on Czech TTS Speech Corpora , 2018, SPECOM.

[24]  Radoslav Sabol,et al.  Improving RNN-based Answer Selection for Morphologically Rich Languages , 2020, ICAART.

[25]  Ronald E. Crochiere,et al.  A study of complexity and quality of speech waveform coders , 1978, ICASSP.

[26]  Giuseppe Riccardi,et al.  Semantic language models for Automatic Speech Recognition , 2014, 2014 IEEE Spoken Language Technology Workshop (SLT).

[27]  Ray Harlow,et al.  Maori: A Linguistic Introduction , 2007 .

[28]  Vasile Rus,et al.  Attention Based Transformer for Student Answers Assessment , 2020, FLAIRS Conference.

[29]  Nicole Propst,et al.  Fluency And Stuttering , 2016 .

[30]  Margaret Maclagan,et al.  The Role of Technology in Measuring Changes in the Pronunciation of Māori over Generations , 2012 .

[31]  Monika S. Schmid,et al.  Language attrition: The next phase , 2004 .

[32]  Sen Bai,et al.  Steganography Integration Into a Low-Bit Rate Speech Codec , 2012, IEEE Transactions on Information Forensics and Security.

[33]  Jan Hajic,et al.  Open-Source Tools for Morphology, Lemmatization, POS Tagging and Named Entity Recognition , 2014, ACL.

[34]  Tony Belpaeme,et al.  Child Speech Recognition in Human-Robot Interaction: Evaluations and Recommendations , 2017, 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI.

[35]  Xia Li,et al.  A robust keyword detection system for criminal scene analysis , 2010, 2010 5th IEEE Conference on Industrial Electronics and Applications.

[36]  Steve Young,et al.  The HTK hidden Markov model toolkit: design and philosophy , 1993 .

[37]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[38]  Haizhou Li,et al.  GMM-SVM Kernel With a Bhattacharyya-Based Distance for Speaker Recognition , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[39]  Heng Ji,et al.  A Multi-lingual Multi-task Architecture for Low-resource Sequence Labeling , 2018, ACL.

[40]  Gökhan Tür,et al.  Automatic detection of sentence boundaries and disfluencies based on recognized words , 1998, ICSLP.

[41]  Astrid Paeschke,et al.  A database of German emotional speech , 2005, INTERSPEECH.

[42]  Daniel Marcu,et al.  Learning Interpretable Spatial Operations in a Rich 3D Blocks World , 2017, AAAI.

[43]  W. Russell,et al.  Continuous hidden Markov modeling for speaker-independent word spotting , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[44]  Abeer Alwan,et al.  Glottal source processing: From analysis to applications , 2014, Comput. Speech Lang..

[45]  Elmar Nöth,et al.  An automatic version of a reading disorder test , 2011, TSLP.

[46]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[47]  Naofumi Aoki A Band Extension Technique for G.711 Speech Using Steganography , 2006, IEICE Trans. Commun..

[48]  Amir Bakarov,et al.  A Survey of Word Embeddings Evaluation Methods , 2018, ArXiv.

[49]  Shang-Ming Wang,et al.  ODSQA: Open-Domain Spoken Question Answering Dataset , 2018, 2018 IEEE Spoken Language Technology Workshop (SLT).

[50]  Sebastian Möller,et al.  Quality prediction for synthesized speech: Comparison of approaches , 2009 .

[51]  Zhiyong Wu,et al.  Detection of Glottal Closure Instants from Speech Signals: A Convolutional Neural Network Based Method , 2018, INTERSPEECH.

[52]  Gautam Bhattacharya,et al.  Deep Neural Network based Text-Dependent Speaker Recognition: Preliminary Results , 2016 .

[53]  W. R. Ford,et al.  Real conversations with artificial intelligence: A comparison between human-human online conversations and human-chatbot conversations , 2015, Comput. Hum. Behav..

[54]  E. Katunina,et al.  [Epidemiology of Parkinson's disease]. , 2013, Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.

[55]  John Blitzer,et al.  Integrated Triaging for Fast Reading Comprehension , 2019, ArXiv.

[56]  Kevin Chen-Chuan Chang,et al.  A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications , 2017, IEEE Transactions on Knowledge and Data Engineering.

[57]  Zdena Palková,et al.  Fonetika a fonologie češtiny : s obecným úvodem do problematikyoboru , 1994 .

[58]  Ngoc Thang Vu,et al.  Encoding Word Confusion Networks with Recurrent Neural Networks for Dialog State Tracking , 2017, SCNLP@EMNLP 2017.

[59]  Ellen R. Girden,et al.  ANOVA: Repeated Measures , 1991 .

[60]  Shuai Wang,et al.  What Does the Speaker Embedding Encode? , 2017, INTERSPEECH.

[61]  Karin Ackermann,et al.  The Nature Of Emotion Fundamental Questions , 2016 .

[62]  Björn Schuller,et al.  Opensmile: the munich versatile and fast open-source audio feature extractor , 2010, ACM Multimedia.

[63]  Roman Cmejla,et al.  Distinct patterns of imprecise consonant articulation among Parkinson’s disease, progressive supranuclear palsy and multiple system atrophy , 2017, Brain and Language.

[64]  Diego Marcheggiani,et al.  Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling , 2017, EMNLP.

[65]  László Tóth,et al.  A Comparison of Deep Neural Network Training Methods for Large Vocabulary Speech Recognition , 2013, TSD.

[66]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[67]  R. Ingham,et al.  Evaluation of a stuttering treatment based on reduction of short phonation intervals. , 2001, Journal of speech, language, and hearing research : JSLHR.

[68]  Artur Janicki Novel Method of Hiding Information in IP Telephony Using Pitch Approximation , 2015, 2015 10th International Conference on Availability, Reliability and Security.

[69]  Sercan Ömer Arik,et al.  Deep Voice 3: 2000-Speaker Neural Text-to-Speech , 2017, ICLR 2018.

[70]  Ona de Gibert,et al.  Hate Speech Dataset from a White Supremacy Forum , 2018, ALW.

[71]  Jimmy J. Lin,et al.  Bridging the Gap between Relevance Matching and Semantic Matching for Short Text Similarity Modeling , 2019, EMNLP.

[72]  Sanjeev Khudanpur,et al.  A time delay neural network architecture for efficient modeling of long temporal contexts , 2015, INTERSPEECH.

[73]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[74]  Karel Pala,et al.  Czech Stem Dictionary for IBM PC XT/AT , 1991 .

[75]  Stefan Ultes,et al.  MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling , 2018, EMNLP.

[76]  James F. Allen,et al.  TRAINS-95: Towards a Mixed-Initiative Planning Assistant , 1996, AIPS.

[77]  J. Flanagan Speech Analysis, Synthesis and Perception , 1971 .

[78]  Daniel Tihelka,et al.  Building of a Speech Corpus Optimised for Unit Selection TTS Synthesis , 2008, LREC.

[79]  Vitaly Shmatikov,et al.  Auditing Data Provenance in Text-Generation Models , 2018, KDD.

[80]  Samuel J. Gershman,et al.  Structured event memory: a neuro-symbolic model of event cognition , 2019, bioRxiv.

[81]  Akira Nishimura Data Hiding in Pitch Delay Data of the Adaptive Multi-Rate Narrow-band Speech Codec , 2009, 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing.

[82]  Sanjeev Khudanpur,et al.  Variational approximation of long-span language models for lvcsr , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[83]  Bharti Gawali,et al.  Recognition and Classification Of Speech And Its Related Fluency Disorders , 2014 .

[84]  Tomohiro Nakatani,et al.  SpeakerBeam: Speaker Aware Neural Network for Target Speaker Extraction in Speech Mixtures , 2019, IEEE Journal of Selected Topics in Signal Processing.

[85]  Mike Brookes,et al.  Estimation of Glottal Closure Instants in Voiced Speech Using the DYPSA Algorithm , 2007, IEEE Transactions on Audio, Speech, and Language Processing.

[86]  Yonatan Belinkov,et al.  What do Neural Machine Translation Models Learn about Morphology? , 2017, ACL.

[87]  Ronald A. Cole,et al.  Pitch detection with a neural-net classifier , 1991, IEEE Trans. Signal Process..

[88]  Sebastian Möller,et al.  Towards Signal-Based Instrumental Quality Diagnosis for Text-to-Speech Systems , 2008, IEEE Signal Processing Letters.

[89]  Philipp Koehn,et al.  Six Challenges for Neural Machine Translation , 2017, NMT@ACL.

[90]  Lili Jiang,et al.  dpUGC: Learn Differentially Private Representation for User Generated Contents , 2019, ArXiv.

[91]  Joseph P. Olive,et al.  Text-to-speech synthesis , 1995, AT&T Technical Journal.

[92]  Jeong-Sik Park,et al.  KEYWORD SPOTTING IN BROADCAST NEWS , 2007 .

[93]  Mark Onslow,et al.  Absolute and relative reliability of percentage of syllables stuttered and severity rating scales. , 2014, Journal of speech, language, and hearing research : JSLHR.

[94]  Marco Morana,et al.  Smart Assistance for Students and People Living in a Campus , 2019, 2019 IEEE International Conference on Smart Computing (SMARTCOMP).

[95]  Yonatan Belinkov,et al.  Understanding and Improving Morphological Learning in the Neural Machine Translation Decoder , 2017, IJCNLP.

[96]  Koenraad Debackere,et al.  Patent Data for Monitoring S&T Portfolios , 2004 .

[97]  Ludo Waltman,et al.  Clustering Scientific Publications Based on Citation Relations: A Systematic Comparison of Different Methods , 2015, PloS one.

[98]  D R Beukelman,et al.  The effect of rate control on the intelligibility and naturalness of dysarthric speech. , 1990, The Journal of speech and hearing disorders.

[99]  Johan Bos,et al.  The Groningen Meaning Bank , 2013, JSSP.

[100]  Bhuvana Ramabhadran,et al.  Prosody contour prediction with long short-term memory, bi-directional, deep recurrent neural networks , 2014, INTERSPEECH.

[101]  Doug Downey,et al.  Multi-sense Definition Modeling using Word Sense Decompositions , 2019, ArXiv.

[102]  Victor Zakharov,et al.  Grammatical Parallelism of Russian Prepositional Localization and Temporal Constructions , 2020, TDS.

[103]  Jean-Michel Renders,et al.  Modeling ASR Ambiguity for Dialogue State Tracking Using Word Confusion Networks , 2020, ArXiv.

[104]  Daniel Tihelka,et al.  A robust multi-phase pitch-mark detection algorithm , 2007, INTERSPEECH.

[105]  Samuel R. Bowman,et al.  A Gold Standard Dependency Corpus for English , 2014, LREC.

[106]  Shlomo Argamon,et al.  Effects of Age and Gender on Blogging , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[107]  Michael Picheny,et al.  Using semantic analysis to improve speech recognition performance , 2005, Comput. Speech Lang..

[108]  Daniel Tihelka,et al.  Using Extreme Gradient Boosting to Detect Glottal Closure Instants in Speech Signal , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[109]  Maarten Sap,et al.  Towards Assessing Changes in Degree of Depression through Facebook , 2014, CLPsych@ACL.

[110]  Jan Vanek,et al.  Optimized Acoustic Likelihoods Computation for NVIDIA and ATI/AMD Graphics Processors , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[111]  I. Dhillon,et al.  X-BERT: eXtreme Multi-label Text Classification with using Bidirectional Encoder Representations from Transformers , 2019 .

[112]  Herman J. M. Steeneken,et al.  Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems , 1993, Speech Commun..

[113]  Arianna Bisazza,et al.  The Lazy Encoder: A Fine-Grained Analysis of the Role of Morphology in Neural Machine Translation , 2018, EMNLP.

[114]  Douglas A. Reynolds,et al.  Speaker Verification Using Adapted Gaussian Mixture Models , 2000, Digit. Signal Process..

[115]  Wenqi Wei,et al.  Demystifying Membership Inference Attacks in Machine Learning as a Service , 2019, IEEE Transactions on Services Computing.

[116]  Ebru Arisoy,et al.  Unlimited vocabulary speech recognition for agglutinative languages , 2006, NAACL.

[117]  Chloé Braud,et al.  ToNy: Contextual embeddings for accurate multilingual discourse segmentation of full documents , 2019 .

[118]  Tanel Alumäe,et al.  Bidirectional Recurrent Neural Network with Attention Mechanism for Punctuation Restoration , 2016, INTERSPEECH.

[119]  Oliver Christ,et al.  The IMS Corpus Workbench: Corpus Query Processor (CQP) - User's Manual , 1999 .

[120]  Šárka Šimáčková,et al.  Czech spoken in Bohemia and Moravia , 2012, Journal of the International Phonetic Association.

[121]  Aleksandra Miletic,et al.  A Sample French-Serbian Dictionary Entry based on the ParCoLab Parallel Corpus , 2018 .

[122]  Léa Courdès-Murphy,et al.  Nivellement et Sociophonologie de deux grands centres urbains : le système vocalique de Toulouse et de Marseille , 2018 .

[123]  Artur Janicki Pitch-based steganography for Speex voice codec , 2016, Secur. Commun. Networks.

[124]  Iyad Rahwan,et al.  The social dilemma of autonomous vehicles , 2015, Science.

[125]  A. Andrews The major functions of the noun phrase , 2007 .

[126]  Gilles Louppe,et al.  Independent consultant , 2013 .

[127]  Julia Hirschberg,et al.  Training intonational phrasing rules automatically for English and Spanish text-to-speech , 1996, Speech Commun..

[128]  T Hehr,et al.  Oral diadochokinesis in neurological dysarthrias. , 1995, Folia phoniatrica et logopaedica : official organ of the International Association of Logopedics and Phoniatrics.

[129]  Jiahai Wang,et al.  Utilizing BERT Intermediate Layers for Aspect Based Sentiment Analysis and Natural Language Inference , 2020, ArXiv.

[130]  Ranniery Maia,et al.  Speaker Adaptation in DNN-Based Speech Synthesis Using d-Vectors , 2017, INTERSPEECH.

[131]  Wiebke Wagner,et al.  Steven Bird, Ewan Klein and Edward Loper: Natural Language Processing with Python, Analyzing Text with the Natural Language Toolkit , 2010, Lang. Resour. Evaluation.

[132]  Jiawei Han,et al.  SRDA: An Efficient Algorithm for Large-Scale Discriminant Analysis , 2008, IEEE Transactions on Knowledge and Data Engineering.

[133]  Maurizio Omologo,et al.  Automatic segmentation and labeling of speech based on Hidden Markov Models , 1993, Speech Commun..

[134]  Christopher D. Manning,et al.  Get To The Point: Summarization with Pointer-Generator Networks , 2017, ACL.

[135]  Nikola Paillereau,et al.  Perception et production des voyelles orales du français par des futures enseignantes tchèques de Français Langue Etrangère (FLE) , 2015 .

[136]  Munetoshi Iwakiri,et al.  Embedding a Text into Conjugate Structure Algebraic Code Excited Linear Prediction Audio Codes , 1998 .

[137]  Tomas Mikolov,et al.  Advances in Pre-Training Distributed Word Representations , 2017, LREC.

[138]  Manfred Stede,et al.  Window-Based Neural Tagging for Shallow Discourse Argument Labeling , 2019, CoNLL.

[139]  Alán Aspuru-Guzik,et al.  Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.

[140]  Philipp Koehn,et al.  Scalable Modified Kneser-Ney Language Model Estimation , 2013, ACL.

[141]  Gerard de Melo,et al.  Exploring Semantic Properties of Sentence Embeddings , 2018, ACL.

[142]  Marko Tadic,et al.  CroDeriV: a new resource for processing Croatian morphology , 2014, LREC.

[143]  Erich Elsen,et al.  Deep Speech: Scaling up end-to-end speech recognition , 2014, ArXiv.

[144]  Zdenek Zabokrtský,et al.  Czech Named Entity Corpus and SVM-based Recognizer , 2009, NEWS@IJCNLP.

[145]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[146]  Jun Zhao,et al.  Curriculum Learning for Natural Answer Generation , 2018, IJCAI.

[147]  Keiko Ochi,et al.  Automatic Evaluation of Soft Articulatory Contact for Stuttering Treatment , 2018, INTERSPEECH.

[148]  Meredith Ringel Morris,et al.  Voicesetting: Voice Authoring UIs for Improved Expressivity in Augmentative Communication , 2018, CHI.

[149]  Tie-Yan Liu,et al.  LightGBM: A Highly Efficient Gradient Boosting Decision Tree , 2017, NIPS.

[150]  Philipp Cimiano,et al.  Semantic parsing of speech using grammars learned with weak supervision , 2015, HLT-NAACL.

[151]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[152]  Úlfar Erlingsson,et al.  The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks , 2018, USENIX Security Symposium.

[153]  Xuanjing Huang,et al.  How to Fine-Tune BERT for Text Classification? , 2019, CCL.

[154]  Lenka Weingartová Identifikace mluvčího v temporální doméně řeči , 2015 .

[155]  Arne Köhn,et al.  Open Source Automatic Speech Recognition for German , 2018, ITG Symposium on Speech Communication.

[156]  Georgiana Dinu,et al.  Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors , 2014, ACL.

[157]  Phil D. Green,et al.  A Lightly Supervised Approach to Detect Stuttering in Children's Speech , 2018, INTERSPEECH.

[158]  Ondrej Bojar,et al.  In Search for Linear Relations in Sentence Embedding Spaces , 2019, ITAT.

[159]  Vitaly Shmatikov,et al.  Machine Learning Models that Remember Too Much , 2017, CCS.

[160]  Fabio Valente,et al.  The INTERSPEECH 2013 computational paralinguistics challenge: social signals, conflict, emotion, autism , 2013, INTERSPEECH.

[161]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[162]  Yongfeng Huang,et al.  A novel steganographic method for algebraic-code-excited-linear-prediction speech streams based on fractional pitch delay search , 2018, Multimedia Tools and Applications.

[163]  John R. Kender,et al.  Alignment of Speech to Highly Imperfect Text Transcriptions , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[164]  Ilya Gusev,et al.  Improving part-of-speech tagging via multi-task learning and character-level word representations , 2018, ArXiv.

[165]  Gaston Heimeriks,et al.  Mapping research topics using word-reference co-occurrences: A method and an exploratory case study , 2006, Scientometrics.

[166]  Sebastian Riedel,et al.  MLQA: Evaluating Cross-lingual Extractive Question Answering , 2019, ACL.

[167]  Wojciech Mazurczyk,et al.  Using transcoding for hidden communication in IP telephony , 2011, Multimedia Tools and Applications.

[168]  Elisabeth André,et al.  Acceptance of Autonomy and Cloud in the Smart Home and Concerns , 2018, Mensch & Computer.

[169]  Tim Polzehl,et al.  Emotion detection in dialog systems: Applications, strategies and challenges , 2009, 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops.

[170]  Jeanette King,et al.  Acoustic Analysis of Maori: Historical Data , 2005 .

[171]  Ebru Arisoy,et al.  Question Answering for Spoken Lecture Processing , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[172]  Dima Alhadidi,et al.  Text-Based Detection of Unauthorized Users of Social Media Accounts , 2018, Canadian Conference on AI.

[173]  Daniel Tihelka,et al.  LSTM-Based Speech Segmentation for TTS Synthesis , 2019, TSD.

[174]  David A. Clifton,et al.  Detecting Adolescent Psychological Pressures from Micro-Blog , 2014, HIS.

[175]  Mark A. Clements,et al.  Phonetic Searching vs. LVCSR: How to Find What You Really Want in Audio Archives , 2002, Int. J. Speech Technol..

[176]  Daniel Tihelka,et al.  Classification-Based Detection of Glottal Closure Instants from Speech Signals , 2017, INTERSPEECH.

[177]  Lenhart K. Schubert,et al.  A Type-coherent, Expressive Representation as an Initial Step to Language Understanding , 2019, IWCS.

[178]  Yair Shapira,et al.  The Speech Efficiency Score (SES): A time-domain measure of speech fluency. , 2018, Journal of fluency disorders.

[179]  Ian Goodfellow,et al.  Deep Learning with Differential Privacy , 2016, CCS.

[180]  Zbynek Koldovský,et al.  Adaptive Blind Audio Source Extraction Supervised By Dominant Speaker Identification Using X-Vectors , 2019, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[181]  G. Weismer,et al.  Kinematic, acoustic, and perceptual analyses of connected speech produced by parkinsonian and normal geriatric adults. , 1989, The Journal of the Acoustical Society of America.

[182]  Guillaume Lample,et al.  Neural Architectures for Named Entity Recognition , 2016, NAACL.

[183]  Mikko Kurimo,et al.  Automatic Speech Recognition With Very Large Conversational Finnish and Estonian Vocabularies , 2017, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[184]  Marie Kunesová,et al.  Detection of Overlapping Speech for the Purposes of Speaker Diarization , 2019, SPECOM.

[185]  Miikka Silfverberg,et al.  A Finnish news corpus for named entity recognition , 2019, Language Resources and Evaluation.

[186]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[187]  Hana Skoumalová A Czech Morphological Lexicon , 1997, SIGMORPHON@EACL.

[188]  Jacqueline Vaissière Area Functions and Articulatory Modeling as a Tool for Investigating the Articulatory, Acoustic, and Perceptual Properties of Sounds Across Languages , 2007 .

[189]  Marco Passarotti,et al.  Formatio formosa est. Building a Word Formation Lexicon for Latin , 2016, CLiC-it/EVALITA.

[190]  Šárka Šimáčková,et al.  Spectrum as a perceptual cue to vowel length in Czech, a quantity language. , 2019, The Journal of the Acoustical Society of America.

[191]  Yusuke Ijima,et al.  DNN-Based Speech Synthesis Using Speaker Codes , 2018, IEICE Trans. Inf. Syst..

[192]  Keiichi Tokuda,et al.  The blizzard challenge - 2005: evaluating corpus-based speech synthesis on common datasets , 2005, INTERSPEECH.

[193]  Steinþór Steingrímsson,et al.  Compiling and Filtering ParIce: An English-Icelandic Parallel Corpus , 2019, NODALIDA.

[194]  Heidi Christensen,et al.  Punctuation annotation using statistical prosody models. , 2001 .

[195]  R C Grace,et al.  A profile of neuropsychiatric problems and their relationship to quality of life for Parkinson's disease patients without dementia. , 2008, Parkinsonism & related disorders.

[196]  Giuseppe De Pietro,et al.  An Effective Corpus-Based Question Answering Pipeline for Italian , 2017, IIMSS.

[197]  Juan Ignacio Godino-Llorente,et al.  Towards the identification of Idiopathic Parkinson’s Disease from the speech. New articulatory kinetic biomarkers , 2017, PloS one.

[198]  Samuel R. Bowman,et al.  Neural Network Acceptability Judgments , 2018, Transactions of the Association for Computational Linguistics.

[199]  Terry Winograd,et al.  Understanding natural language , 1974 .

[200]  Roland Vollgraf,et al.  Contextual String Embeddings for Sequence Labeling , 2018, COLING.

[201]  Guillaume Lample,et al.  Word Translation Without Parallel Data , 2017, ICLR.

[202]  Geoffrey Zweig,et al.  Linguistic Regularities in Continuous Space Word Representations , 2013, NAACL.

[203]  Jackie Peck,et al.  Using Storytelling to Promote Language and Literacy Development. , 1989 .

[204]  Laurence Devillers,et al.  Detection of real-life emotions in call centers , 2005, INTERSPEECH.

[205]  Matthew Baerman,et al.  Understanding and measuring morphological complexity , 2015 .

[206]  Karen Spärck Jones,et al.  Unconstrained keyword spotting using phone lattices with application to spoken document retrieval , 1997, Comput. Speech Lang..

[207]  Samy Bengio,et al.  Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model , 2017, ArXiv.

[208]  Dipti Misra Sharma,et al.  No more beating about the bush : A Step towards Idiom Handling for Indian Language NLP , 2018, LREC.

[209]  Jesús Francisco Vargas-Bonilla,et al.  NeuroSpeech: An open-source software for Parkinson's speech analysis , 2017, Digit. Signal Process..

[210]  Eliyahu Kiperwasser,et al.  Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations , 2016, TACL.

[211]  Paul Taylor,et al.  Assigning phrase breaks from part-of-speech sequences , 1997, Comput. Speech Lang..

[212]  Georges Linarès,et al.  Modelling Semantic Context of OOV Words in Large Vocabulary Continuous Speech Recognition , 2017, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[213]  Markéta Juzová Prosodic Phrase Boundary Classification Based on Czech Speech Corpora , 2017, TSD.

[214]  Jason Weston,et al.  Natural Language Processing (Almost) from Scratch , 2011, J. Mach. Learn. Res..

[215]  Saif Mohammad,et al.  CROWDSOURCING A WORD–EMOTION ASSOCIATION LEXICON , 2013, Comput. Intell..

[216]  Thomas Wolf,et al.  DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter , 2019, ArXiv.

[217]  Matthias Hagen,et al.  TARGER: Neural Argument Mining at Your Fingertips , 2019, ACL.

[218]  Anders Søgaard,et al.  A Survey of Cross-lingual Word Embedding Models , 2017, J. Artif. Intell. Res..

[219]  Aris Xanthos,et al.  Computational Learning of Morphology , 2017 .

[220]  Jonáš Vidra Morphological segmentation of Czech Words , 2018 .

[221]  Grzegorz Chrupala,et al.  Encoding of phonology in a recurrent neural model of grounded speech , 2017, CoNLL.

[222]  Raymond Hendy Susanto,et al.  The CoNLL-2014 Shared Task on Grammatical Error Correction , 2014 .

[223]  L. Lisker,et al.  A Cross-Language Study of Voicing in Initial Stops: Acoustical Measurements , 1964 .

[224]  Julie M. Liss,et al.  A Cognitive-Perceptual Approach to Conceptualizing Speech Intelligibility Deficits and Remediation Practice in Hypokinetic Dysarthria , 2011, Parkinson's disease.

[225]  Katy Börner,et al.  Mapping knowledge domains , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[226]  Moni Naor,et al.  Our Data, Ourselves: Privacy Via Distributed Noise Generation , 2006, EUROCRYPT.

[227]  P. J. Price,et al.  Evaluation of Spoken Language Systems: the ATIS Domain , 1990, HLT.

[228]  Wen Wang,et al.  Rich system combination for keyword spotting in noisy and acoustically heterogeneous audio streams , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[229]  Louis-Jean Boë,et al.  La parole et son traitement automatique , 1989 .

[230]  R'emi Louf,et al.  HuggingFace's Transformers: State-of-the-art Natural Language Processing , 2019, ArXiv.

[231]  Arne Köhn,et al.  What’s in an Embedding? Analyzing Word Embeddings through Multilingual Evaluation , 2015, EMNLP.

[232]  Ethel Ong,et al.  At Home with Alexa: A Tale of Two Conversational Agents , 2020, TDS.

[233]  Tie-Yan Liu,et al.  A Communication-Efficient Parallel Algorithm for Decision Tree , 2016, NIPS.

[234]  Arthur S. Abramson,et al.  Voice Onset Time (VOT) at 50: Theoretical and practical issues in measuring voicing distinctions , 2017, J. Phonetics.

[235]  Jianhua Tao,et al.  Phoneme Dependent Speaker Embedding and Model Factorization for Multi-speaker Speech Synthesis and Adaptation , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[236]  Jean Carletta,et al.  Assessing Agreement on Classification Tasks: The Kappa Statistic , 1996, CL.

[237]  Alan McCree,et al.  Speaker diarization using deep neural network embeddings , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[238]  Daniel Tihelka,et al.  Pitch Marks at Peaks or Valleys? , 2007, TSD.

[239]  Minh Nguyen SDP-JAIST: A Shallow Discourse Parsing system $@$ CoNLL 2016 Shared Task , 2016, CoNLL Shared Task.

[240]  Paul Boersma,et al.  Praat, a system for doing phonetics by computer , 2002 .

[241]  Rich Caruana,et al.  Multitask Learning: A Knowledge-Based Source of Inductive Bias , 1993, ICML.

[242]  Ryuichiro Higashinaka,et al.  Neural Confnet Classification: Fully Neural Network Based Spoken Utterance Classification Using Word Confusion Networks , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[243]  Yonatan Belinkov,et al.  Analysis Methods in Neural Language Processing: A Survey , 2018, TACL.

[244]  Scott E. Fahlman,et al.  A Planning System for Robot Construction Tasks , 1973, Artif. Intell..

[245]  Milan Straka,et al.  Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe , 2017, CoNLL.

[246]  Jian Zhang,et al.  SQuAD: 100,000+ Questions for Machine Comprehension of Text , 2016, EMNLP.

[247]  Allyson Ettinger,et al.  Probing for semantic evidence of composition by means of simple classification tasks , 2016, RepEval@ACL.

[248]  Nikola Ljubesic,et al.  New Inflectional Lexicons and Training Corpora for Improved Morphosyntactic Annotation of Croatian and Serbian , 2016, LREC.

[249]  Simone Paolo Ponzetto,et al.  Policy Preference Detection in Parliamentary Debate Motions , 2019, CoNLL.

[250]  Kai Yu,et al.  Unrestricted Vocabulary Keyword Spotting Using LSTM-CTC , 2016, INTERSPEECH.

[251]  H. Hollien,et al.  Speaking fundamental frequency and chronologic age in males. , 1972, Journal of speech and hearing research.

[252]  Carlos Guestrin,et al.  XGBoost : Reliable Large-scale Tree Boosting System , 2015 .

[253]  Quoc V. Le,et al.  Exploiting Similarities among Languages for Machine Translation , 2013, ArXiv.

[254]  Wei-Hung Weng,et al.  Publicly Available Clinical BERT Embeddings , 2019, Proceedings of the 2nd Clinical Natural Language Processing Workshop.

[255]  William Yang Wang,et al.  Learning to Explain Non-Standard English Words and Phrases , 2017, IJCNLP.

[256]  Alina Wróblewska,et al.  Empirical Linguistic Study of Sentence Embeddings , 2019, ACL.

[257]  Eren Erdal Aksoy,et al.  Deep Episodic Memory: Encoding, Recalling, and Predicting Episodic Experiences for Robot Action Execution , 2018, IEEE Robotics and Automation Letters.

[258]  Aleš Horák,et al.  DEBVisDic - First Version of New Client-Server Wordnet Browsing and Editing Tool , 2005 .

[259]  Thierry Dutoit,et al.  Glottal closure and opening instant detection from speech signals , 2019, INTERSPEECH.

[260]  Ruprecht von Waldenfels Recent Development in ParaSol: Breadth for Depth and XSLT based web concordancing with CWB , 2011 .

[261]  Ankur Bapna,et al.  Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges , 2019, ArXiv.

[262]  Johannes A Louw,et al.  Speaker specific phrase break modeling with conditional random fields for text-to-speech , 2016, 2016 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech).

[263]  Alexis Hiniker,et al.  Why doesn't it work?: voice-driven interfaces and young children's communication repair strategies , 2018, IDC.

[264]  Guillaume Lample,et al.  XNLI: Evaluating Cross-lingual Sentence Representations , 2018, EMNLP.

[265]  Kevin Gimpel,et al.  ALBERT: A Lite BERT for Self-supervised Learning of Language Representations , 2019, ICLR.

[266]  Artur Janicki,et al.  Modification of Pitch Parameters in Speech Coding for Information Hiding , 2020, TDS.

[267]  M. Smith,et al.  Cross-linguistic Aspects of Second Language Acquisition , 1983 .

[268]  Christian Bentz,et al.  A Comparison Between Morphological Complexity Measures: Typological Data vs. Language Corpora , 2016, CL4LC@COLING 2016.

[269]  Ondrej Bojar,et al.  Costra 1.1: An Inquiry into Geometric Properties of Sentence Spaces , 2020, TDS.

[270]  Andreas Stolcke,et al.  SRILM - an extensible language modeling toolkit , 2002, INTERSPEECH.

[271]  Richard Heusdens,et al.  A Fast Method for High-Resolution Voiced/Unvoiced Detection and Glottal Closure/Opening Instant Estimation of Speech , 2016, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[272]  Paul Boersma,et al.  Praat: doing phonetics by computer , 2003 .

[273]  Abdelhak Lakhouaja,et al.  MulTed: a multilingual aligned and tagged parallel corpus , 2020 .

[274]  Raul Martínez‐Fernández,et al.  ACTUALIZACIÓN EN LA ENFERMEDAD DE PARKINSON , 2016 .

[275]  Jonás Vidra Implementation of a Search Engine for DeriNet , 2015, ITAT.

[276]  Giovanni Semeraro,et al.  An Italian Question Answering System for Structured Data based on Controlled Natural Languages , 2019, CLiC-it.

[277]  Manuel Montes-y-Gómez,et al.  Detecting Depression in Social Media using Fine-Grained Emotions , 2019, NAACL.

[278]  Benno Stein,et al.  Overview of the 5th Author Profiling Task at PAN 2017: Gender and Language Variety Identification in Twitter , 2017, CLEF.

[279]  Ehud Reiter,et al.  A Structured Review of the Validity of BLEU , 2018, CL.

[280]  Carla Teixeira Lopes,et al.  TIMIT Acoustic-Phonetic Continuous Speech Corpus , 2012 .

[281]  Wei Xu,et al.  Bidirectional LSTM-CRF Models for Sequence Tagging , 2015, ArXiv.

[282]  Marcis Pinnis,et al.  Tilde’s Parallel Corpus Filtering Methods for WMT 2018 , 2018, WMT.

[283]  Sabri Pllana,et al.  PAPA: A parallel programming assistant powered by IBM Watson cognitive computing technology , 2018, J. Comput. Sci..

[284]  Yoad Winter,et al.  A Semantic Characterization of Locative PPs , 1997 .

[285]  Percy Liang,et al.  Know What You Don’t Know: Unanswerable Questions for SQuAD , 2018, ACL.

[286]  Jindrich Matousek,et al.  Czech Speech Synthesis with Generative Neural Vocoder , 2019, TSD.

[287]  Manish Shrivastava,et al.  Answering Naturally: Factoid to Full length Answer Generation , 2019, EMNLP.

[288]  Benjamin R. Cowan,et al.  Siri, Echo and Performance: You have to Suffer Darling , 2019, CHI Extended Abstracts.

[289]  Simone Paolo Ponzetto,et al.  BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network , 2012, Artif. Intell..

[290]  Radek Skarnitzl,et al.  Temporal downtrends in Czech read speech , 2007, INTERSPEECH.

[291]  Khalid Daoudi,et al.  Detection of Glottal Closure Instants Based on the Microcanonical Multiscale Formalism , 2014, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[292]  Haruna Isah,et al.  A Voice Interactive Multilingual Student Support System using IBM Watson , 2019, 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA).

[293]  Jörg Tiedemann,et al.  Parallel Data, Tools and Interfaces in OPUS , 2012, LREC.

[294]  Tom Vanallemeersch,et al.  Being Generous with Sub-Words towards Small NMT Children , 2020, LREC.

[295]  Mark R Laws,et al.  A bilingual speech interface for New Zealand English to Māori , 1998 .

[296]  Masayuki Suzuki,et al.  Improvements to N-gram Language Model Using Text Generated from Neural Language Model , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[297]  Geoffrey E. Hinton,et al.  Phoneme recognition using time-delay neural networks , 1989, IEEE Trans. Acoust. Speech Signal Process..

[298]  Peter Richtárik,et al.  Federated Learning: Strategies for Improving Communication Efficiency , 2016, ArXiv.

[299]  Marion Weller,et al.  How to Account for Idiomatic German Support Verb Constructions in Statistical Machine Translation , 2015, MWE@NAACL-HLT.

[300]  Sanjeev Khudanpur,et al.  Librispeech: An ASR corpus based on public domain audio books , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[301]  Alan L. Porter,et al.  Science overlay maps: A new tool for research policy and library management , 2009, J. Assoc. Inf. Sci. Technol..

[302]  András Kornai,et al.  Parallel corpora for medium density languages , 2007 .

[303]  Rémi Barré Sense and nonsense of S&T productivity indicators , 2001 .

[304]  Stephen Cox,et al.  Stochastic and syntactic techniques for predicting phrase breaks , 2007, Comput. Speech Lang..

[305]  Tegan Maharaj,et al.  Deep Nets Don't Learn via Memorization , 2017, ICLR.

[306]  Lalit R. Bahl,et al.  Maximum mutual information estimation of hidden Markov model parameters for speech recognition , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[307]  Xiaojun Li,et al.  Multidimensional Evaluation Platform for Call Center Speech Service Quality Based on Keyword Spotting , 2013 .

[308]  Neville Ryant,et al.  Leveraging LSTM Models for Overlap Detection in Multi-Party Meetings , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[309]  Krzysztof Jassem,et al.  Statistical versus neural machine translation – a case study for a medium size domain-specific bilingual corpus , 2019, Poznan Studies in Contemporary Linguistics.

[310]  Ion Androutsopoulos,et al.  Large-Scale Multi-Label Text Classification on EU Legislation , 2019, ACL.

[311]  Samy Bengio,et al.  Tensor2Tensor for Neural Machine Translation , 2018, AMTA.

[312]  Magdalena Jankowska,et al.  Author Verification Using Common N-Gram Profiles of Text Documents , 2014, COLING.

[313]  Samy Bengio,et al.  Understanding deep learning requires rethinking generalization , 2016, ICLR.

[314]  Yun-Nung Chen,et al.  MUSE: Modularizing Unsupervised Sense Embeddings , 2017, EMNLP.

[315]  Sanjeev Khudanpur,et al.  Probing the Information Encoded in X-Vectors , 2019, 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU).

[316]  Maurizio Lenzerini,et al.  Data integration for research and innovation policy: an Ontology-Based Data Management approach , 2015, Scientometrics.

[317]  Wieslawa Kuniszyk-Józkowiak,et al.  Hierarchical ANN system for stuttering identification , 2013, Comput. Speech Lang..

[318]  Samuel R. Bowman,et al.  A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference , 2017, NAACL.

[319]  Cédric Gendrot,et al.  Impact of duration on F1/F2 formant values of oral vowels: an automatic analysis of large broadcast news corpora in French and German , 2005, INTERSPEECH.

[320]  Giuseppe Castellucci,et al.  Almawave-SLU: A New Dataset for SLU in Italian , 2019, CLiC-it.

[321]  S. Gilman,et al.  Diagnostic criteria for Parkinson disease. , 1999, Archives of neurology.

[322]  Terry K Koo,et al.  A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. , 2016, Journal Chiropractic Medicine.

[323]  Antonio Balvet,et al.  TALC-sef A Manually-Revised POS-TAgged Literary Corpus in Serbian, English and French , 2014, LREC.

[324]  Wojciech Mazurczyk,et al.  Steganography of VoIP Streams , 2008, OTM Conferences.

[325]  Graham Neubig,et al.  Learning to Describe Unknown Phrases with Local and Global Contexts , 2019, NAACL.

[326]  Jürgen Schmidhuber,et al.  Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks , 2006, ICML.

[327]  Sofia Stamou,et al.  Exploring Balkanet Shared Ontology for Multilingual Conceptual Indexing , 2004, LREC.

[328]  Chuang Gan,et al.  The Neuro-Symbolic Concept Learner: Interpreting Scenes Words and Sentences from Natural Supervision , 2019, ICLR.

[329]  Tom'avs Musil,et al.  Examining Structure of Word Embeddings with PCA , 2019, TSD.

[330]  Elmar Nöth,et al.  Convolutional Neural Networks and a Transfer Learning Strategy to Classify Parkinson's Disease from Speech in Three Different Languages , 2019, CIARP.

[331]  R. Major Losing English as a First Language. , 1992 .

[332]  Fabio Crestani,et al.  Overview of eRisk 2019 Early Risk Prediction on the Internet , 2019, CLEF.

[333]  J. C. Vásquez-Correa,et al.  Towards an automatic evaluation of the dysarthria level of patients with Parkinson's disease. , 2018, Journal of communication disorders.

[334]  Simon Krek,et al.  The Universal Dependencies Treebank for Slovenian , 2017, BSNLP@EACL.

[335]  Daniel Povey,et al.  The Kaldi Speech Recognition Toolkit , 2011 .

[336]  Roberto Pirrone,et al.  QuASIt: A Cognitive Inspired Approach to Question Answering for the Italian Language , 2016, AI*IA.

[337]  Anders Søgaard,et al.  Deep multi-task learning with low level tasks supervised at lower layers , 2016, ACL.

[338]  Arthur C. Graesser,et al.  Intelligent Tutoring Systems with Conversational Dialogue , 2001, AI Mag..

[339]  I-Fan Chen,et al.  A hybrid HMM/DNN approach to keyword spotting of short words , 2013, INTERSPEECH.

[340]  Srinivas Bangalore,et al.  Intonational phrase break prediction for text-to-speech synthesis using dependency relations , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[341]  Alexey Sorokin,et al.  Tuning Multilingual Transformers for Language-Specific Named Entity Recognition , 2019, BSNLP@ACL.

[342]  Martin D. Sykora,et al.  What about Mood Swings: Identifying Depression on Twitter with Temporal Measures of Emotions , 2018, WWW.

[343]  Anna Rumshisky,et al.  RuSentiment: An Enriched Sentiment Analysis Dataset for Social Media in Russian , 2018, COLING.

[344]  Wayne H. Ward,et al.  My Science Tutor: A Conversational Multimedia Virtual Tutor. , 2013 .

[345]  Anne Marie Piper,et al.  Hey Google, Do Unicorns Exist?: Conversational Agents as a Path to Answers to Children's Questions , 2019, IDC.

[346]  Sanjeev Khudanpur,et al.  End-to-end Speech Recognition Using Lattice-free MMI , 2018, INTERSPEECH.

[347]  Masaaki Nagata,et al.  Hybrid Approach to PDTB-styled Discourse Parsing for CoNLL-2015 , 2015, CoNLL Shared Task.

[348]  O. Hornykiewicz Biochemical aspects of Parkinson's disease , 1998, Neurology.

[349]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[350]  Yifan Gong,et al.  Domain and Speaker Adaptation for Cortana Speech Recognition , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[351]  Björn Schuller,et al.  Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments , 2017 .

[352]  Ales Horák,et al.  AQA: Automatic Question Answering System for Czech , 2016, TSD.

[353]  Ivan Laptev,et al.  Learning and Transferring Mid-level Image Representations Using Convolutional Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[354]  Max Bane,et al.  Quantifying and Measuring Morphological Complexity , 2007 .

[355]  Sergey Ioffe,et al.  Probabilistic Linear Discriminant Analysis , 2006, ECCV.

[356]  Yiming Wang,et al.  Purely Sequence-Trained Neural Networks for ASR Based on Lattice-Free MMI , 2016, INTERSPEECH.

[357]  Ariya Rastrow,et al.  LatticeRnn: Recurrent Neural Networks Over Lattices , 2016, INTERSPEECH.

[358]  Taku Kudo,et al.  SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing , 2018, EMNLP.

[359]  Toni Giorgino,et al.  Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package , 2009 .

[360]  Yiming Yang,et al.  XLNet: Generalized Autoregressive Pretraining for Language Understanding , 2019, NeurIPS.

[361]  Karel Blavka,et al.  Using Suprasegmental Information in Recognized Speech Punctuation Completion , 2014, TSD.

[362]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[363]  Vasile Rus,et al.  Evaluation Dataset (DT-Grade) and Word Weighting Approach towards Constructed Short Answers Assessment in Tutorial Dialogue Context , 2016, BEA@NAACL-HLT.

[364]  Cvetana Krstev,et al.  Literature and Aligned Texts , 2022 .

[365]  Sebastian Stabinger,et al.  Adapt or Get Left Behind: Domain Adaptation through BERT Language Model Finetuning for Aspect-Target Sentiment Classification , 2020, LREC.

[366]  Kevin Gimpel,et al.  Towards Universal Paraphrastic Sentence Embeddings , 2015, ICLR.

[367]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[368]  Mitchel Weintraub,et al.  LVCSR log-likelihood ratio scoring for keyword spotting , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[369]  Niranjan Balasubramanian,et al.  Human Centered NLP with User-Factor Adaptation , 2017, EMNLP.

[370]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[371]  Sanjeev Khudanpur,et al.  X-Vectors: Robust DNN Embeddings for Speaker Recognition , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[372]  Aneta Pavlenko,et al.  L2 Influence on L1 in Late Bilingualism , 2000 .

[373]  Ayse Basar Bener,et al.  How to Effectively Train IBM Watson: Classroom Experience , 2016, 2016 49th Hawaii International Conference on System Sciences (HICSS).

[374]  Raymond J. Mooney,et al.  Improving Black-box Speech Recognition using Semantic Parsing , 2017, IJCNLP 2017.

[375]  Yonatan Belinkov,et al.  Evaluating Layers of Representation in Neural Machine Translation on Part-of-Speech and Semantic Tagging Tasks , 2017, IJCNLP.

[376]  Denis Paperno,et al.  Mark my Word: A Sequence-to-Sequence Approach to Definition Modeling , 2019, ArXiv.

[377]  Marcello Federico,et al.  Complexity of spoken versus written language for machine translation , 2014, EAMT.

[378]  Jón Guðnason,et al.  Risamálheild: A Very Large Icelandic Text Corpus , 2018, LREC.

[379]  Patrick Kenny,et al.  Front-End Factor Analysis for Speaker Verification , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[380]  Zdeněk Žabokrtský,et al.  DeriNet 2.0: Towards an All-in-One Word-Formation Resource , 2019 .

[381]  H. Brendan McMahan,et al.  Learning Differentially Private Recurrent Language Models , 2017, ICLR.

[382]  Yu Gu,et al.  Multi-task WaveNet: A Multi-task Generative Model for Statistical Parametric Speech Synthesis without Fundamental Frequency Conditions , 2018, INTERSPEECH.

[383]  Ioannis Korkontzelos,et al.  SemEval-2013 Task 5: Evaluating Phrasal Semantics , 2013, *SEMEVAL.

[384]  Verena Rieser,et al.  Benchmarking Natural Language Understanding Services for building Conversational Agents , 2019, IWSDS.

[385]  Ke Chen,et al.  Spatial Working Memory in the LIDA Cognitive Architecture , 2013, ICCM 2013.

[386]  J. Pennebaker,et al.  The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods , 2010 .

[387]  Elisabeth André,et al.  Progress to a VOCA with Prosodic Synthesised Speech , 2018, ICCHP.

[388]  Yoshimasa Tsuruoka,et al.  A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks , 2016, EMNLP.

[389]  Alexandru Ceausu,et al.  South-East European Times : A parallel corpus of Balkan languages , Francis Tyers and , 2010 .

[390]  Ngoc Thang Vu,et al.  Comparing approaches to convert recurrent neural networks into backoff language models for efficient decoding , 2014, INTERSPEECH.

[391]  Carol Genetti,et al.  How Languages Work: An Introduction to Language and Linguistics , 2018 .

[392]  Takao Kobayashi,et al.  Analysis of Speaker Adaptation Algorithms for HMM-Based Speech Synthesis and a Constrained SMAPLR Adaptation Algorithm , 2009, IEEE Transactions on Audio, Speech, and Language Processing.

[393]  Iz Beltagy,et al.  SciBERT: A Pretrained Language Model for Scientific Text , 2019, EMNLP.

[394]  Marián Simko,et al.  Combining Cross-lingual and Cross-task Supervision for Zero-Shot Learning , 2020, TDS.

[395]  Slav Petrov,et al.  Multi-Source Transfer of Delexicalized Dependency Parsers , 2011, EMNLP.

[396]  G. Schulz,et al.  Effects of speech therapy and pharmacologic and surgical treatments on voice and speech in Parkinson's disease: a review of the literature. , 2000, Journal of communication disorders.

[397]  Zhizheng Wu,et al.  A study of speaker adaptation for DNN-based speech synthesis , 2015, INTERSPEECH.

[398]  Daniel Tihelka,et al.  Experiments with Automatic Segmentation for Czech Speech Synthesis , 2003, TSD.

[399]  Ronald L. Webster,et al.  An Operant Response Shaping Program for the Establishment of Fluency in Stutterers. Final Report. , 1972 .

[400]  Erik F. Tjong Kim Sang,et al.  Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity Recognition , 2002, CoNLL.

[401]  Veselin Stoyanov,et al.  Unsupervised Cross-lingual Representation Learning at Scale , 2019, ACL.

[402]  Elmar Nöth,et al.  Feature Representation of Pathophysiology of Parkinsonian Dysarthria , 2019, INTERSPEECH.

[403]  Benno Stein,et al.  Overview of the Author Identification Task at PAN-2018: Cross-domain Authorship Attribution and Style Change Detection , 2018, CLEF.

[404]  Jirí Málek,et al.  Robust Recognition of Conversational Telephone Speech via Multi-condition Training and Data Augmentation , 2018, TSD.

[405]  S. Engel,et al.  The Stories Children Tell: Making Sense of the Narratives of Childhood , 1995 .

[406]  Petr Sojka,et al.  Software Framework for Topic Modelling with Large Corpora , 2010 .

[407]  Jacob Eisenstein,et al.  One Vector is Not Enough: Entity-Augmented Distributed Semantics for Discourse Relations , 2014, TACL.

[408]  Vitaly Shmatikov,et al.  Membership Inference Attacks Against Machine Learning Models , 2016, 2017 IEEE Symposium on Security and Privacy (SP).

[409]  Dimitri Palaz,et al.  Jointly Learning to Locate and Classify Words Using Convolutional Networks , 2016, INTERSPEECH.

[410]  Yonatan Belinkov,et al.  Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks , 2016, ICLR.

[411]  Peter C. Wright,et al.  Interdisciplinary criticism: Analysing the experience of riot! a location-sensitive digital narrative , 2006, Behav. Inf. Technol..

[412]  Ales Horák,et al.  Question and Answer Classification in Czech Question Answering Benchmark Dataset , 2019, ICAART.

[413]  Daniel Kondratyuk,et al.  75 Languages, 1 Model: Parsing Universal Dependencies Universally , 2019, EMNLP.

[414]  Francis M. Tyers,et al.  Apertium-IceNLP: A rule-based Icelandic to English machine translation system , 2011, EAMT.

[415]  Christiane Fellbaum,et al.  The Spanish version of WordNet 3.0 , 2008, KONVENS.

[416]  Mikko Kurimo,et al.  Subword RNNLM Approximations for Out-Of-Vocabulary Keyword Search , 2019, INTERSPEECH.

[417]  E. Bézard,et al.  Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms , 2009, The Lancet Neurology.

[418]  M. Swerts Prosodic features at discourse boundaries of different strength. , 1997, The Journal of the Acoustical Society of America.

[419]  Orhan Firat,et al.  Massively Multilingual Neural Machine Translation , 2019, NAACL.

[420]  Sabiha Parveen,et al.  Presence of stop bursts and multiple bursts in individuals with Parkinson disease , 2014, International journal of speech-language pathology.

[421]  Kyomin Jung,et al.  Effective Sentence Scoring Method Using BERT for Speech Recognition , 2019, ACML.

[422]  Murat Akbacak,et al.  Bag-of-Audio-Words Approach for Multimedia Event Classification , 2012, INTERSPEECH.

[423]  Péter Rácz Gradient Maori Phonotactics , 2016 .

[424]  Tomohiro Nakatani,et al.  Speaker-Aware Neural Network Based Beamformer for Speaker Extraction in Speech Mixtures , 2017, INTERSPEECH.

[425]  Raymond Chi-Wing Wong,et al.  L2RS: A Learning-to-Rescore Mechanism for Automatic Speech Recognition , 2019, ArXiv.

[426]  Ralf Dresner,et al.  Rethinking Context Language As An Interactive Phenomenon , 2016 .

[427]  Grigorios Tsoumakas,et al.  WISE 2014 Challenge: Multi-label Classification of Print Media Articles to Topics , 2014, WISE.

[428]  Yana Yunusova,et al.  Classifications of vocalic segments from articulatory kinematics: healthy controls and speakers with dysarthria. , 2011, Journal of speech, language, and hearing research : JSLHR.

[429]  Alexander M. Rush,et al.  OpenNMT: Open-Source Toolkit for Neural Machine Translation , 2017, ACL.

[430]  Mikko Kurimo,et al.  Morfessor FlatCat: An HMM-Based Method for Unsupervised and Semi-Supervised Learning of Morphology , 2014, COLING.

[431]  Shiliang Zhang,et al.  Compact Feedforward Sequential Memory Networks for Large Vocabulary Continuous Speech Recognition , 2016, INTERSPEECH.

[432]  Vitaly Shmatikov,et al.  Privacy-preserving deep learning , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[433]  David Megías,et al.  Pitch and Fourier magnitude based steganography for hiding 2.4 kbps MELP bitstream , 2019, IET Signal Process..

[434]  Ilya Sutskever,et al.  Language Models are Unsupervised Multitask Learners , 2019 .

[435]  Thorsten Joachims,et al.  Evaluation methods for unsupervised word embeddings , 2015, EMNLP.

[436]  Ondrej Bojar,et al.  COSTRA 1.0: A Dataset of Complex Sentence Transformations , 2020, LREC.

[437]  Emmanuel Dupoux,et al.  Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies , 2016, TACL.

[438]  Daniel Gildea,et al.  Corpus Variation and Parser Performance , 2001, EMNLP.

[439]  Erik F. Tjong Kim Sang,et al.  Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition , 2003, CoNLL.

[440]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[441]  José M. F. Moura,et al.  CLEVR-Dialog: A Diagnostic Dataset for Multi-Round Reasoning in Visual Dialog , 2019, NAACL.

[442]  Hamish Cunningham,et al.  GATE-a General Architecture for Text Engineering , 1996, COLING.

[443]  Ales Horák,et al.  Sentence and Word Embedding Employed in Open Question-Answering , 2018, ICAART.

[444]  Sara B. Kiesler,et al.  Why do people seek anonymity on the internet?: informing policy and design , 2013, CHI.

[445]  Zdeněk Žabokrtský,et al.  Universal Derivations Kickoff: A Collection of Harmonized Derivational Resources for Eleven Languages , 2019 .

[446]  Suzanne Stevenson,et al.  The VNC-Tokens Dataset , 2008 .

[447]  Daniel Tihelka,et al.  Glottal Closure Instant Detection from Speech Signal Using Voting Classifier and Recursive Feature Elimination , 2018, INTERSPEECH.

[448]  Klára Vicsi,et al.  Automatic Classification of Emotions in Spontaneous Speech , 2010, COST 2102 Conference.

[449]  Yuan Luo,et al.  Graph Convolutional Networks for Text Classification , 2018, AAAI.

[450]  Andrew W. Senior,et al.  Fast and accurate recurrent neural network acoustic models for speech recognition , 2015, INTERSPEECH.

[451]  Carlo Strapparava,et al.  WordNet for Italian and Its Use for Lexical Deiscrimination , 1997, AI*IA.

[452]  Hai Zhao,et al.  A Constituent Syntactic Parse Tree Based Discourse Parser , 2016, CoNLL Shared Task.

[453]  Sébastien Le Maguer,et al.  Speech Synthesis Evaluation — State-of-the-Art Assessment and Suggestion for a Novel Research Program , 2019, 10th ISCA Workshop on Speech Synthesis (SSW 10).

[454]  Yoshua Bengio,et al.  A Closer Look at Memorization in Deep Networks , 2017, ICML.

[455]  Martin Popel,et al.  CUNI Transformer Neural MT System for WMT18 , 2018, WMT.

[456]  X Yao T Gong,et al.  An Attention-based Deep Model for Automatic Short Answer Score , 2018 .

[457]  Elmar Nöth,et al.  Phonet: A Tool Based on Gated Recurrent Neural Networks to Extract Phonological Posteriors from Speech , 2019, INTERSPEECH.

[458]  David P. Wilkins,et al.  Exploring the Importance of Emotional Competence in Children With Complex Communication Needs , 2009 .

[459]  Juan Ignacio Godino-Llorente,et al.  A forced gaussians based methodology for the differential evaluation of Parkinson's Disease by means of speech processing , 2019, Biomed. Signal Process. Control..

[460]  Jan Svec,et al.  On Using Stateful LSTM Networks for Key-Phrase Detection , 2019, TSD.

[461]  Eneko Agirre,et al.  A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings , 2018, ACL.

[462]  Pascal Denis,et al.  Comparing Word Representations for Implicit Discourse Relation Classification , 2015, EMNLP.

[463]  Terry Regier,et al.  Probing sentence embeddings for structure-dependent tense , 2018, BlackboxNLP@EMNLP.

[464]  Erik McDermott,et al.  Deep neural networks for small footprint text-dependent speaker verification , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[465]  Sophia Ananiadou,et al.  Inter-sentence Relation Extraction with Document-level Graph Convolutional Neural Network , 2019, ACL.

[466]  Ramón de la Fuente,et al.  Salud mental en México , 1997 .

[467]  Elmar Nöth,et al.  Characterisation of voice quality of Parkinson's disease using differential phonological posterior features , 2017, Comput. Speech Lang..

[468]  Chung Hee Hwang,et al.  Episodic Logic Meets Little Red Riding Hood: A Comprehensive, Natural Representation for Language Un , 2000 .

[469]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[470]  Shrikanth S. Narayanan,et al.  A review of ASR technologies for children's speech , 2009, WOCCI.

[471]  Hermann Ney,et al.  Language Modeling with Deep Transformers , 2019, INTERSPEECH.

[472]  Katrin Neumann,et al.  Computergestützte Therapie bei Redeflussstörungen: Die langfristige Wirksamkeit der Kasseler Stottertherapie (KST) , 2009 .

[473]  Sergey I. Nikolenko,et al.  Word Embeddings for User Profiling in Online Social Networks , 2017, Computación y Sistemas.

[474]  Yang Deng,et al.  Knowledge-aware Attentive Neural Network for Ranking Question Answer Pairs , 2018, SIGIR.

[475]  Milan Straka,et al.  Universal Dependencies 2.5 Models for UDPipe (2019-12-06) , 2019 .

[476]  Nikola Ljubesic,et al.  Universal Dependencies for Croatian (that work for Serbian, too) , 2015, BSNLP@RANLP.

[477]  Tine Lassen An Ontology-based View on Prepositional Senses , 2006, ACL 2006.

[478]  Samuel R. Bowman,et al.  Towards Realistic Practices In Low-Resource Natural Language Processing: The Development Set , 2019, EMNLP.

[479]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[480]  Ewan Klein,et al.  Natural Language Processing with Python , 2009 .

[481]  Tomas Mikolov,et al.  Enriching Word Vectors with Subword Information , 2016, TACL.

[482]  E. Yairi,et al.  Early childhood stuttering I: persistency and recovery rates. , 1999, Journal of speech, language, and hearing research : JSLHR.

[483]  D. Klatt Voice onset time, frication, and aspiration in word-initial consonant clusters. , 1975, Journal of speech and hearing research.

[484]  James F. Allen,et al.  TRIPS: An Integrated Intelligent Problem-Solving Assistant , 1998, AAAI/IAAI.

[485]  Catherine I. Watson,et al.  Exploring Text To Speech Synthesis in Non-Standard Languages , 2016 .

[486]  Tapio Salakoski,et al.  Building the essential resources for Finnish: the Turku Dependency Treebank , 2013, Language Resources and Evaluation.

[487]  Irina Illina,et al.  Introduction of Semantic Model to Help Speech Recognition , 2020, TDS.

[488]  Lei He,et al.  Amplitude envelope kinematics of speech signal: parameter extraction and applications , 2017 .

[489]  P. Hrdina Basic Neurochemistry: Molecular, Cellular and Medical Aspects. , 1996 .

[490]  Ronald C. Kessler,et al.  The burden of depressive illness , 2017 .

[491]  Xuanjing Huang,et al.  Investigating Language Universal and Specific Properties in Word Embeddings , 2016, ACL.

[492]  Marc Schröder,et al.  Open Source Voice Creation Toolkit for the MARY TTS Platform , 2011, INTERSPEECH.

[493]  V. Silber-Varod,et al.  The effect of pitch, intensity and pause duration in punctuation detection , 2012, 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel.

[494]  Jan Nouza,et al.  ASR for South Slavic Languages Developed in Almost Automated Way , 2016, INTERSPEECH.

[495]  Sven Koitka,et al.  Word Embeddings and Linguistic Metadata at the CLEF 2018 Tasks for Early Detection of Depression and Anorexia , 2018, CLEF.

[496]  Summersdale Every Cloud Has a Silver Lining , 2012 .

[497]  Elmar Nöth,et al.  Automatic evaluation of parkinson's speech - acoustic, prosodic and voice related cues , 2013, INTERSPEECH.

[498]  Andy Way,et al.  Is Neural Machine Translation the New State of the Art? , 2017, Prague Bull. Math. Linguistics.

[499]  Christoph Meinel,et al.  Punctuation Prediction for Unsegmented Transcript Based on Word Vector , 2016, LREC.

[500]  Ineke Mennen,et al.  First Language Attrition in the Speech of Dutch-English Bilinguals: The Case of Monozygotic Twin Sisters. , 2012 .

[501]  Fabio Valente,et al.  Improving acoustic based keyword spotting using LVCSR lattices , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[502]  Daniel Tihelka,et al.  Annotation errors detection in TTS corpora , 2013, INTERSPEECH.

[503]  Elmar Nöth,et al.  Phonological Posteriors and GRU Recurrent Units to Assess Speech Impairments of Patients with Parkinson's Disease , 2018, TSD.

[504]  Omer Levy,et al.  Deep RNNs Encode Soft Hierarchical Syntax , 2018, ACL.

[505]  Juan R. Orozco-Arroyave,et al.  Analysis of speech of people with Parkinson's disease , 2016 .

[506]  Sebastian Schuster,et al.  Cross-lingual Transfer Learning for Multilingual Task Oriented Dialog , 2018, NAACL.

[507]  Sébastien Le Maguer,et al.  Creating New Language and Voice Components for the Updated MaryTTS Text-to-Speech Synthesis Platform , 2017, LREC.

[508]  A. Aronson,et al.  Clusters of deviant speech dimensions in the dysarthrias. , 1969, Journal of speech and hearing research.

[509]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[510]  Matej Ulvcar,et al.  High Quality ELMo Embeddings for Seven Less-Resourced Languages , 2019 .

[511]  Christopher D. Manning,et al.  Effective Approaches to Attention-based Neural Machine Translation , 2015, EMNLP.

[512]  Jan Silovský,et al.  Speech-to-text technology to transcribe and disclose 100, 000+ hours of bilingual documents from historical Czech and Czechoslovak radio archive , 2014, INTERSPEECH.

[513]  Yijia Liu,et al.  Towards Better UD Parsing: Deep Contextualized Word Embeddings, Ensemble, and Treebank Concatenation , 2018, CoNLL.

[514]  Stephen Cox,et al.  Some statistical issues in the comparison of speech recognition algorithms , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[515]  Changsheng Liu,et al.  Phrasal Substitution of Idiomatic Expressions , 2016, NAACL.

[516]  Renato De Mori,et al.  Language portability of a speech understanding system , 1998, Comput. Speech Lang..

[517]  Elmar Nöth,et al.  Articulation and Empirical Mode Decomposition Features in Diadochokinetic Exercises for the Speech Assessment of Parkinson's Disease Patients , 2019, CIARP.

[518]  Li Tian,et al.  An Open Source Emotional Speech Corpus for Human Robot Interaction Applications , 2018, INTERSPEECH.

[519]  Mark R. Laws Speech Data Analysis for Diphone Construction of a Maori Online Text-to-speech Synthesizer , 2003, SIP.

[520]  Edward A. Stohr,et al.  Building a Cognitive Application Using Watson DeepQA , 2017, IT Professional.

[521]  Xing Shi,et al.  Does String-Based Neural MT Learn Source Syntax? , 2016, EMNLP.

[522]  Anne Marie Piper,et al.  "Siri, is this you?": Understanding young children's interactions with voice input systems , 2015, IDC.

[523]  Marina Fridin,et al.  Kindergarten Social Assistive Robot (KindSAR) for children's geometric thinking and metacognitive development in preschool education: A pilot study , 2014, Comput. Hum. Behav..

[524]  Martin Gruber,et al.  Current State of Text-to-Speech System ARTIC: A Decade of Research on the Field of Speech Technologies , 2018, TSD.

[525]  J. Logemann,et al.  Frequency and cooccurrence of vocal tract dysfunctions in the speech of a large sample of Parkinson patients. , 1978, The Journal of speech and hearing disorders.

[526]  Precha Thavikulwat,et al.  Affinity Propagation: A Clustering Algorithm for Computer-Assisted Business Simulations and Experiential Exercises , 2014 .

[527]  Regina Barzilay,et al.  Machine Comprehension with Discourse Relations , 2015, ACL.

[528]  Malvina Nissim,et al.  Casting a Wide Net: Robust Extraction of Potentially Idiomatic Expressions , 2019, ArXiv.

[529]  Hagen Soltau,et al.  Fast speaker adaptive training for speech recognition , 2008, INTERSPEECH.

[530]  Jacqueline Vaissière,et al.  On the Acoustic and Perceptual Characterization of Reference Vowels in a Cross-language Perspective , 2011, ICPhS.

[531]  Yiming Wang,et al.  Semi-Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks , 2018, INTERSPEECH.

[532]  Elmar Nöth,et al.  Automatic stuttering recognition using hidden Markov models , 2000, INTERSPEECH.

[533]  Tingting Xu,et al.  Simple and effective speech steganography in G.723.1 low-rate codes , 2009, 2009 International Conference on Wireless Communications & Signal Processing.

[534]  Ronald A. Rensink Scene Perception , 2007 .

[535]  C. Fillmore,et al.  Regularity and Idiomaticity in Grammatical Constructions: The Case of Let Alone , 1988 .

[536]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[537]  Yann LeCun,et al.  Signature Verification Using A "Siamese" Time Delay Neural Network , 1993, Int. J. Pattern Recognit. Artif. Intell..

[538]  Choh Man Teng,et al.  Building and Learning Structures in a Situated Blocks World Through Deep Language Understanding , 2018 .

[539]  Sampo Pyysalo,et al.  Universal Dependencies v1: A Multilingual Treebank Collection , 2016, LREC.

[540]  E. D. Hirsch,et al.  Reading Comprehension Requires Knowledge— of Words and the World Scientific Insights into the Fourth-Grade Slump and the Nation's Stagnant Comprehension Scores , 2003 .

[541]  Hung-yi Lee,et al.  Zero-shot Reading Comprehension by Cross-lingual Transfer Learning with Multi-lingual Language Representation Model , 2019, EMNLP.

[542]  Sanjeev Arora,et al.  Linear Algebraic Structure of Word Senses, with Applications to Polysemy , 2016, TACL.

[543]  Norihiro Hagita,et al.  Effects of a Listener Robot with Children in Storytelling , 2017, HAI.

[544]  Giuseppe De Pietro,et al.  Hybrid query expansion using lexical resources and word embeddings for sentence retrieval in question answering , 2020, Inf. Sci..

[545]  Nikola Ljubesic,et al.  Lemmatization and Morphosyntactic Tagging of Croatian and Serbian , 2013, BSNLP@ACL.

[546]  Sanjeev Khudanpur,et al.  Audio augmentation for speech recognition , 2015, INTERSPEECH.

[547]  Aleksandra Haddad Un treebank pour le serbe : constitution et exploitations , 2018 .

[548]  Radoslav Sabol,et al.  Czech Question Answering with Extended SQAD v3.0 Benchmark Dataset , 2019, RASLAN.

[549]  Lynette Hirschman,et al.  Deep Read: A Reading Comprehension System , 1999, ACL.

[550]  Jan Nouza,et al.  Fast Keyword Spotting in Telephone Speech , 2009 .

[551]  Mireia Farrús,et al.  Attentional Parallel RNNs for Generating Punctuation in Transcribed Speech , 2017, SLSP.

[552]  Isabel Trancoso,et al.  Age and gender detection in the I-DASH project , 2011, TSLP.

[553]  Georg Heigold,et al.  End-to-end text-dependent speaker verification , 2015, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[554]  Michael A. Covington,et al.  Cutting the Gordian Knot: The Moving-Average Type–Token Ratio (MATTR) , 2010, J. Quant. Linguistics.

[555]  Matthew P. Aylett,et al.  Speech Synthesis for the Generation of Artificial Personality , 2020, IEEE Transactions on Affective Computing.

[556]  Evgeny A. Stepanov,et al.  The UniTN Discourse Parser in CoNLL 2015 Shared Task: Token-level Sequence Labeling with Argument-specific Models , 2015, CoNLL.

[557]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[558]  T. Most,et al.  The Use of Repair Strategies by Children With and Without Hearing Impairment. , 2002, Language, speech, and hearing services in schools.

[559]  Q. Mcnemar Note on the sampling error of the difference between correlated proportions or percentages , 1947, Psychometrika.

[560]  Mikko Kurimo,et al.  Improved Subword Modeling for WFST-Based Speech Recognition , 2017, INTERSPEECH.

[561]  Vasile Rus,et al.  Assessing Free Student Answers in Tutorial Dialogues Using LSTM Models , 2018, AIED.

[562]  Man Lan,et al.  A Refined End-to-End Discourse Parser , 2015, CoNLL Shared Task.

[563]  Christian Biemann,et al.  NoSta-D Named Entity Annotation for German: Guidelines and Dataset , 2014, LREC.

[564]  Gökhan Tür,et al.  Beyond ASR 1-best: Using word confusion networks in spoken language understanding , 2006, Comput. Speech Lang..

[565]  Anton Osokin,et al.  Breaking Sticks and Ambiguities with Adaptive Skip-gram , 2015, AISTATS.

[566]  Holger Schwenk,et al.  Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond , 2018, Transactions of the Association for Computational Linguistics.

[567]  R. Viswanathan,et al.  Parkinson's Disease Diagnosis Based on Multivariate Deep Features of Speech Signal , 2018, 2018 IEEE Life Sciences Conference (LSC).

[568]  Xavier Bresson,et al.  Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering , 2016, NIPS.

[569]  Elmar Nöth,et al.  Convolutional Neural Network to Model Articulation Impairments in Patients with Parkinson's Disease , 2017, INTERSPEECH.

[570]  Kadri Muischnek,et al.  Estonian Dependency Treebank: from Constraint Grammar tagset to Universal Dependencies , 2016, LREC.

[571]  Mauro Cettolo,et al.  WIT3: Web Inventory of Transcribed and Translated Talks , 2012, EAMT.

[572]  M. Hariharan,et al.  MFCC based recognition of repetitions and prolongations in stuttered speech using k-NN and LDA , 2009, 2009 IEEE Student Conference on Research and Development (SCOReD).

[573]  Doug Downey,et al.  Definition Modeling: Learning to Define Word Embeddings in Natural Language , 2016, AAAI.

[574]  Dmitry P. Vetrov,et al.  Conditional Generators of Words Definitions , 2018, ACL.

[575]  John Hewitt,et al.  Designing and Interpreting Probes with Control Tasks , 2019, EMNLP.

[576]  Jan Silovský,et al.  Making Czech Historical Radio Archive Accessible and Searchable for Wide Public , 2012, J. Multim..

[577]  Beat Pfister,et al.  Text-to-speech alignment of long recordings using universal phone models , 2013, INTERSPEECH.

[578]  Markus Egg,et al.  How Complex is Discourse Structure? , 2010, LREC.

[579]  Hassan Takabi,et al.  Privacy-preserving Machine Learning as a Service , 2018, Proc. Priv. Enhancing Technol..

[580]  Aung Pyae,et al.  Investigating differences between native english and non-native english speakers in interacting with a voice user interface: a case of google home , 2018, OZCHI.

[581]  Úlfar Erlingsson,et al.  The Secret Sharer: Measuring Unintended Neural Network Memorization & Extracting Secrets , 2018, ArXiv.

[582]  Arianna Bisazza,et al.  Neural versus Phrase-Based Machine Translation Quality: a Case Study , 2016, EMNLP.

[583]  Boyang Li,et al.  Collaborative Storytelling between Robot and Child: A Feasibility Study , 2017, IDC.

[584]  Sungroh Yoon,et al.  Training IBM Watson Using Automatically Generated Question-Answer Pairs , 2017, HICSS.

[585]  An Yang,et al.  Machine Reading Comprehension: a Literature Review , 2019, ArXiv.

[586]  Lukás Burget,et al.  Comparison of keyword spotting approaches for informal continuous speech , 2005, INTERSPEECH.

[587]  Mikko Kurimo,et al.  Overview and Results of Morpho Challenge 2009 , 2009, CLEF.

[588]  Lenhart K. Schubert,et al.  Interpreting Tense, Aspect and Time Adverbials: A Compositional, Unified Approach , 1994, ICTL.

[589]  Tomohiro Nakatani,et al.  Rescoring N-Best Speech Recognition List Based on One-on-One Hypothesis Comparison Using Encoder-Classifier Model , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[590]  David R. Traum,et al.  A reranking approach for recognition and classification of speech input in conversational dialogue systems , 2012, 2012 IEEE Spoken Language Technology Workshop (SLT).

[591]  Gerard de Melo,et al.  Sentence Analogies: Exploring Linguistic Relationships and Regularities in Sentence Embeddings , 2020, ArXiv.

[592]  Hwee Tou Ng,et al.  A PDTB-styled end-to-end discourse parser , 2012, Natural Language Engineering.

[593]  Sebastian Riedel,et al.  The CoNLL 2007 Shared Task on Dependency Parsing , 2007, EMNLP.

[594]  G J Borden,et al.  Onset of voicing in stuttered and fluent utterances. , 1985, Journal of speech and hearing research.

[595]  John M. Boyer Natural language question answering in the financial domain , 2018, CASCON.

[596]  Douglas A. Reynolds,et al.  Comparison of background normalization methods for text-independent speaker verification , 1997, EUROSPEECH.

[597]  Steven J. Murdoch,et al.  Embedding Covert Channels into TCP/IP , 2005, Information Hiding.

[598]  Daniel Soutner,et al.  Web Text Data Mining for Building Large Scale Language Modelling Corpus , 2011, TSD.

[599]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[600]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[601]  J. Matoušek,et al.  On the detection of pitch marks using a robust multi-phase algorithm , 2011, Speech Commun..

[602]  Hitoshi Isahara,et al.  Development of the Japanese WordNet , 2008, LREC.

[603]  Jan Svec,et al.  General framework for mining, processing and storing large amounts of electronic texts for language modeling purposes , 2014, Lang. Resour. Evaluation.

[604]  Guandong Xu,et al.  Refining Parkinson’s neurological disorder identification through deep transfer learning , 2019, Neural Computing and Applications.

[605]  K. Á. T.,et al.  Towards a tool for the Subjective Assessment of Speech System Interfaces (SASSI) , 2000, Natural Language Engineering.

[606]  Dionne Tiffany Ong,et al.  Challenges Posed by Voice Interface to Child- Agent Collaborative Storytelling , 2019, 2019 22nd Conference of the Oriental COCOSDA International Committee for the Co-ordination and Standardisation of Speech Databases and Assessment Techniques (O-COCOSDA).

[607]  Roman Cmejla,et al.  Automatic Evaluation of Articulatory Disorders in Parkinson’s Disease , 2014, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[608]  Kishore Prahallad,et al.  Learning speaker-specific phrase breaks for text-to-speech systems , 2010, SSW.

[609]  Sabine Buchholz,et al.  CoNLL-X Shared Task on Multilingual Dependency Parsing , 2006, CoNLL.

[610]  Hai Zhao,et al.  Shallow Discourse Parsing Using Convolutional Neural Network , 2016, CoNLL.

[611]  Patrick A. Naylor,et al.  Detection of Glottal Closure Instants From Speech Signals: A Quantitative Review , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[612]  John L. Arnott,et al.  Applying an analysis of acted vocal emotions to improve the simulation of synthetic speech , 2008, Comput. Speech Lang..

[613]  Xi Chen,et al.  Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks , 2019, NAACL.

[614]  Hervé Bourlard,et al.  Overlapping Speech Detection Using Long-Term Conversational Features for Speaker Diarization in Meeting Room Conversations , 2014, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[615]  Alexandr Rosen,et al.  The case of InterCorp, a multilingual parallel corpus , 2012 .

[616]  Phil Blunsom,et al.  A Convolutional Neural Network for Modelling Sentences , 2014, ACL.

[617]  Morgan Sonderegger,et al.  Montreal Forced Aligner: Trainable Text-Speech Alignment Using Kaldi , 2017, INTERSPEECH.

[618]  Daniel Jurafsky,et al.  Sharp Nearby, Fuzzy Far Away: How Neural Language Models Use Context , 2018, ACL.

[619]  A. Packman,et al.  Prolonged speech and modification of stuttering: perceptual, acoustic, and electroglottographic data. , 1994, Journal of speech and hearing research.

[620]  Tanel Alumäe,et al.  LSTM for punctuation restoration in speech transcripts , 2015, INTERSPEECH.

[621]  Barbara E. Bullock,et al.  Mapping the Patterns of Maintenance versus Merger in Bilingual Phonology: The Preservation of [a] vs. [ɑ] in Frenchville French , 2006 .

[622]  Omer Levy,et al.  RoBERTa: A Robustly Optimized BERT Pretraining Approach , 2019, ArXiv.

[623]  J. Kelley,et al.  The precision fluency shaping program: Replication and evaluation , 1982 .

[624]  Miles Osborne,et al.  Statistical Machine Translation , 2010, Encyclopedia of Machine Learning and Data Mining.

[625]  Elmar Nöth,et al.  Deep Learning Approach to Parkinson’s Disease Detection Using Voice Recordings and Convolutional Neural Network Dedicated to Image Classification , 2019, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[626]  Eric Horvitz,et al.  Predicting Depression via Social Media , 2013, ICWSM.

[627]  Dirk Weissenborn,et al.  FastQA: A Simple and Efficient Neural Architecture for Question Answering , 2017, ArXiv.

[628]  Jesús Francisco Vargas-Bonilla,et al.  New Spanish speech corpus database for the analysis of people suffering from Parkinson’s disease , 2014, LREC.

[629]  Thomas Fang Zheng,et al.  Transfer learning for speech and language processing , 2015, 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA).

[630]  Monica S. Lam,et al.  Almond: The Architecture of an Open, Crowdsourced, Privacy-Preserving, Programmable Virtual Assistant , 2017, WWW.

[631]  Asif A. Ghazanfar,et al.  The Natural Statistics of Audiovisual Speech , 2009, PLoS Comput. Biol..

[632]  Bruce Biggs,et al.  Let's learn Maori : a guide to the study of the Maori language , 1969 .

[633]  Awni Y. Hannun,et al.  An End-to-End Architecture for Keyword Spotting and Voice Activity Detection , 2016, ArXiv.

[634]  Michal Rott,et al.  Text Punctuation: An Inter-annotator Agreement Study , 2017, TSD.

[635]  Mathias Creutz,et al.  Unsupervised Discovery of Morphemes , 2002, SIGMORPHON.

[636]  Lenhart K. Schubert,et al.  Managing Casual Spoken Dialogue Using Flexible Schemas , Pattern Transduction Trees , and Gist Clauses , 2017 .

[637]  Yannick Estève,et al.  TED-LIUM 3: twice as much data and corpus repartition for experiments on speaker adaptation , 2018, SPECOM.

[638]  Lingjia Tang,et al.  An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction , 2019, EMNLP.

[639]  Ondrej Dusek,et al.  CzEng 1.6: Enlarged Czech-English Parallel Corpus with Processing Tools Dockered , 2016, TSD.

[640]  Lenhart K. Schubert,et al.  Generating Discourse Inferences from Unscoped Episodic Logical Formulas , 2019, Proceedings of the First International Workshop on Designing Meaning Representations.

[641]  John H. L. Hansen,et al.  Overlapped-speech detection with applications to driver assessment for in-vehicle active safety systems , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[642]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[643]  Fabio Crestani,et al.  Overview of eRisk: Early Risk Prediction on the Internet (Extended Lab Overview) , 2018, CLEF.

[644]  Petar S. Aleksic,et al.  Keyword spotting for Google assistant using contextual speech recognition , 2017, 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU).

[645]  Jindrich Matousek,et al.  Automatic pitch-synchronous phonetic segmentation , 2008, INTERSPEECH.

[646]  J. Jankovic,et al.  Movement Disorder Society‐sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS‐UPDRS): Scale presentation and clinimetric testing results , 2008, Movement disorders : official journal of the Movement Disorder Society.

[647]  Björn W. Schuller,et al.  openXBOW - Introducing the Passau Open-Source Crossmodal Bag-of-Words Toolkit , 2016, J. Mach. Learn. Res..

[648]  Klamer Schutte,et al.  Object recognition using deep convolutional neural networks with complete transfer and partial frozen layers , 2016, Security + Defence.

[649]  Carlos J. Perez,et al.  A Diadochokinesis-based expert system considering articulatory features of plosive consonants for early detection of Parkinson's disease , 2018, Comput. Methods Programs Biomed..

[650]  Kyu J. Han,et al.  Deep Learning-Based Telephony Speech Recognition in the Wild , 2017, INTERSPEECH.

[651]  Pier Marco Bertinetto,et al.  DerIvaTario: An annotated lexicon of Italian derivatives , 2016 .

[652]  Jan Rusz Detecting speech disorders in early Parkinson’s disease by acoustic analysis , 2018 .

[653]  Varun Srivastava,et al.  Detection of Glottal Closure Instants from Raw Speech Using Convolutional Neural Networks , 2019, INTERSPEECH.

[654]  Dan Roth,et al.  Learning Question Classifiers , 2002, COLING.

[655]  Ales Horák,et al.  New features in DEBVisDic for WordNet Visualization and User Feedback , 2017, RASLAN.

[656]  Guillaume Lample,et al.  What you can cram into a single $&!#* vector: Probing sentence embeddings for linguistic properties , 2018, ACL.