Class-Incremental Learning with Generative Classifiers

Incrementally training deep neural networks to recognize new classes is a challenging problem. Most existing class-incremental learning methods store data or use generative replay, both of which have drawbacks, while ‘rehearsal-free’ alternatives such as parameter regularization or bias-correction methods do not consistently achieve high performance. Here, we put forward a new strategy for class-incremental learning: generative classification. Rather than directly learning the conditional distribution p(y|x), our proposal is to learn the joint distribution p(x, y), factorized as p(x|y)p(y), and to perform classification using Bayes’ rule. As a proof-of-principle, here we implement this strategy by training a variational autoencoder for each class to be learned and by using importance sampling to estimate the likelihoods p(x|y). This simple approach performs very well on a diverse set of continual learning benchmarks, outperforming generative replay and other existing baselines that do not store data.

[1]  Adrian Popescu,et al.  A Comprehensive Study of Class Incremental Learning Algorithms for Visual Tasks , 2020, Neural Networks.

[2]  Dahua Lin,et al.  Learning a Unified Classifier Incrementally via Rebalancing , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Yarin Gal,et al.  Towards Robust Evaluations of Continual Learning , 2018, ArXiv.

[4]  Tinne Tuytelaars,et al.  Online Continual Learning with Maximally Interfered Retrieval , 2019, ArXiv.

[5]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[6]  Anthony V. Robins,et al.  Catastrophic Forgetting, Rehearsal and Pseudorehearsal , 1995, Connect. Sci..

[7]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[8]  Jian Sun,et al.  Identity Mappings in Deep Residual Networks , 2016, ECCV.

[9]  Tinne Tuytelaars,et al.  Task-Free Continual Learning , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Shaoning Pang,et al.  Incremental linear discriminant analysis for classification of data streams , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[11]  Ruslan Salakhutdinov,et al.  Importance Weighted Autoencoders , 2015, ICLR.

[12]  Yarin Gal,et al.  A Unifying Bayesian View of Continual Learning , 2019, ArXiv.

[13]  Matthias Bethge,et al.  A note on the evaluation of generative models , 2015, ICLR.

[14]  Tinne Tuytelaars,et al.  A Continual Learning Survey: Defying Forgetting in Classification Tasks , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Andreas S. Tolias,et al.  Three scenarios for continual learning , 2019, ArXiv.

[16]  Davide Maltoni,et al.  CORe50: a New Dataset and Benchmark for Continuous Object Recognition , 2017, CoRL.

[17]  Yandong Guo,et al.  Large Scale Incremental Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Richard E. Turner,et al.  Variational Continual Learning , 2017, ICLR.

[19]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[20]  Davide Maltoni,et al.  Continuous Learning in Single-Incremental-Task Scenarios , 2018, Neural Networks.

[21]  Razvan Pascanu,et al.  Overcoming catastrophic forgetting in neural networks , 2016, Proceedings of the National Academy of Sciences.

[22]  Arthur Douillard,et al.  Continuum: Simple Management of Complex Continual Learning Scenarios , 2021, ArXiv.

[23]  Yen-Cheng Liu,et al.  Re-evaluating Continual Learning Scenarios: A Categorization and Case for Strong Baselines , 2018, ArXiv.

[24]  David Filliat,et al.  Generative Models from the perspective of Continual Learning , 2018, 2019 International Joint Conference on Neural Networks (IJCNN).

[25]  Andrei A. Rusu,et al.  Embracing Change: Continual Learning in Deep Neural Networks , 2020, Trends in Cognitive Sciences.

[26]  Elena Mocanu,et al.  One-Shot Learning using Mixture of Variational Autoencoders: a Generalization Learning approach , 2018, AAMAS.

[27]  Christoph H. Lampert,et al.  iCaRL: Incremental Classifier and Representation Learning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  David Rolnick,et al.  Experience Replay for Continual Learning , 2018, NeurIPS.

[29]  Adrian Popescu,et al.  ScaIL: Classifier Weights Scaling for Class Incremental Learning , 2020, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[30]  Christopher Kanan,et al.  REMIND Your Neural Network to Prevent Catastrophic Forgetting , 2020, ECCV.

[31]  Tinne Tuytelaars,et al.  Continual Prototype Evolution: Learning Online from Non-Stationary Data Streams , 2020, ArXiv.

[32]  Antonio Torralba,et al.  Energy-Based Models for Continual Learning , 2020, ArXiv.

[33]  Stefan Wermter,et al.  Continual Lifelong Learning with Neural Networks: A Review , 2019, Neural Networks.

[34]  Ioannis Kanellos,et al.  Initial Classifier Weights Replay for Memoryless Class Incremental Learning , 2020, BMVC.

[35]  Elad Hoffer,et al.  Task Agnostic Continual Learning Using Online Variational Bayes , 2018, 1803.10123.

[36]  Josef Kittler,et al.  Incremental Linear Discriminant Analysis Using Sufficient Spanning Sets and Its Applications , 2010, International Journal of Computer Vision.

[37]  Matthias Bethge,et al.  Towards the first adversarially robust neural network model on MNIST , 2018, ICLR.

[38]  Joelle Pineau,et al.  Online Learned Continual Compression with Adaptive Quantization Modules , 2019, ICML.

[39]  Carey E. Priebe,et al.  Representation Ensembling for Synergistic Lifelong Learning with Quasilinear Complexity , 2020, 2004.12908.

[40]  Jiwon Kim,et al.  Continual Learning with Deep Generative Replay , 2017, NIPS.

[41]  Alexandros Karatzoglou,et al.  Overcoming Catastrophic Forgetting with Hard Attention to the Task , 2018 .

[42]  Andreas S. Tolias,et al.  Generative replay with feedback connections as a general strategy for continual learning , 2018, ArXiv.

[43]  Nicolas Y. Masse,et al.  Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization , 2018, Proceedings of the National Academy of Sciences.

[44]  Hava T. Siegelmann,et al.  Brain-inspired replay for continual learning with artificial neural networks , 2020, Nature Communications.

[45]  Marc'Aurelio Ranzato,et al.  Gradient Episodic Memory for Continual Learning , 2017, NIPS.

[46]  Philip H. S. Torr,et al.  GDumb: A Simple Approach that Questions Our Progress in Continual Learning , 2020, ECCV.

[47]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[48]  Alfred O. Hero,et al.  Shrinkage Algorithms for MMSE Covariance Estimation , 2009, IEEE Transactions on Signal Processing.

[49]  Bogdan Raducanu,et al.  Generative Feature Replay For Class-Incremental Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[50]  Christopher Kanan,et al.  Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[51]  Visvanathan Ramesh,et al.  A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning , 2020, ArXiv.

[52]  Surya Ganguli,et al.  Continual Learning Through Synaptic Intelligence , 2017, ICML.

[53]  Mehrdad Farajtabar,et al.  The Effectiveness of Memory Replay in Large Scale Continual Learning , 2020, ArXiv.

[54]  Sijia Wang,et al.  GAN Memory with No Forgetting , 2020, NeurIPS.

[55]  Mohammad Emtiyaz Khan,et al.  Continual Deep Learning by Functional Regularisation of Memorable Past , 2020, NeurIPS.

[56]  Marc'Aurelio Ranzato,et al.  On Tiny Episodic Memories in Continual Learning , 2019 .

[57]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.