Note on the computational complexity of least core concepts for min-cost spanning tree games

Abstract. Various least core concepts including the classical least core of cooperative games are discussed. By a reduction from minimum cover problems, we prove that computing an element in these least cores is in general NP-hard for minimum cost spanning tree games. As a consequence, computing the nucleolus, the nucleon and the per-capita nucleolus of minimum cost spanning tree games is also NP-hard.

[1]  C. G. Bird,et al.  On cost allocation for a spanning tree: A game theoretic approach , 1976, Networks.

[2]  D. Schmeidler The Nucleolus of a Characteristic Function Game , 1969 .

[3]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[4]  Sándor P. Fekete,et al.  The nucleon of cooperative games and an algorithm for matching games , 1998, Math. Program..

[5]  L. Shapley,et al.  QUASI-CORES IN A MONETARY ECONOMY WITH NONCONVEX PREFERENCES , 1966 .

[6]  H. Young,et al.  Cost allocation in water resources development , 1982 .

[7]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[8]  Daniel Granot,et al.  On the core and nucleolus of minimum cost spanning tree games , 1984, Math. Program..

[9]  U. Faigle,et al.  On the complexity of testing membership in the core of min-cost spanning tree games , 1997 .

[10]  Eugen Wallmeier,et al.  Der f-Nukleolus und ein dynamisches Verhandlungsmodell als Lösungskonzepte für kooperative n-Personenspiele , 1983 .

[11]  Ulrich Faigle,et al.  On some approximately balanced combinatorial cooperative games , 1993, ZOR Methods Model. Oper. Res..

[12]  S. Tijs,et al.  Extensions of solution concepts by means of multiplicative å-games , 1986 .

[13]  Sándor P. Fekete,et al.  On the complexity of testing membership in the core of min-cost spanning tree games , 1997, Int. J. Game Theory.

[14]  Jeroen Kuipers,et al.  Note Computing the nucleolus of min-cost spanning tree games is NP-hard , 1998, Int. J. Game Theory.

[15]  Daniel Granot,et al.  Minimum cost spanning tree games , 1981, Math. Program..

[16]  L. S. Shapley,et al.  Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts , 1979, Math. Oper. Res..