VSS-version of energy-based control for swinging up a pendulum

Abstract A new algorithm ensuring global attractivity of the upright (unstable) equilibrium of a pendulum, based on the variable structure system-version of the energy-speed-gradient method, is proposed. It is shown that global attractivity cannot be obtained with continuous static state feedback. A detailed global analysis of the transient behavior of the closed loop system is presented. In addition, it is shown that the global attractivity of the upright equilibrium can be achieved by applying a control of arbitrarily small magnitude.

[1]  Mark W. Spong,et al.  Control of underactuated mechanical systems using switching and saturation , 1997 .

[2]  Alexander L. Fradkov,et al.  Introduction to Control of Oscillations and Chaos , 1998 .

[3]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[4]  Richard Bellman,et al.  Vibrational control of nonlinear systems , 1984, The 23rd IEEE Conference on Decision and Control.

[5]  R. Lozano,et al.  Stabilization of the inverted pendulum around its homoclinic orbit , 2000 .

[6]  Chung Choo Chung,et al.  Nonlinear control of a swinging pendulum , 1995, Autom..

[7]  Naomi Ehrich Leonard,et al.  Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem , 2000, IEEE Trans. Autom. Control..

[8]  Wei Lin,et al.  Global asymptotic stabilization of general nonlinear systems with stable free dynamics via passivity and bounded feedback , 1996, Autom..

[9]  Alexander L. Fradkov,et al.  Control of oscillations in Hamiltonian systems , 1997, 1997 European Control Conference (ECC).

[10]  Anton S. Shiriaev,et al.  The notion of V-detectability and stabilization of invariant sets of nonlinear systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[11]  Anton S. Shiriaev,et al.  The notion of V-detectability and stabilization of invariant sets of nonlinear systems☆ , 2000 .

[12]  Alexander L. Fradkov,et al.  Stabilization of invariant sets for nonlinear non-affine systems , 2000, Autom..

[13]  K Furuta,et al.  Swing-up Control of Inverted Pendulum Using Pseudo-State Feedback , 1992 .

[14]  Alexander L. Fradkov Swinging control of nonlinear oscillations , 1996 .

[15]  I. Blekhman Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications , 2000 .

[16]  A. Stephenson XX. On induced stability , 1908 .

[17]  Olav Egeland,et al.  On global properties of passivity-based control of an inverted pendulum , 2000 .

[18]  K. Åström,et al.  A New Strategy for Swinging Up an Inverted Pendulum , 1993 .

[19]  D. Chillingworth DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS AND CHAOS , 1998 .

[20]  Semyon M. Meerkov,et al.  Vibrational control of nonlinear systems: Vibrational stabilizability , 1986 .

[21]  Katsuhisa Furuta,et al.  Swinging up a pendulum by energy control , 1996, Autom..

[22]  Anton S. Shiriaev Stabilization of compact sets for passive affine nonlinear systems , 2000, Autom..