The Time Course of Object, Scene, and Face Categorization

Abstract We first describe Strategy Length & Internal Practicability ( SLIP ), a formal model for thinking about categorization, in particular about the time course of categorization. We then discuss an early application of this model to basic-levelness. We then turn to aspects of the time course of categorization that have been neglected in the categorization literature: our limited processing capacities; the necessity of having a flexible categorization apparatus; and the paradox that this inexorably brings about. We propose a twofold resolution of this paradox, attempting, in the process, to bridge work done on categorization in vision, neuropsychology, and physiology.

[1]  S. Ullman Visual routines , 1984, Cognition.

[2]  H. Brownell,et al.  Category differentiation in object recognition: typicality constraints on the basic category advantage. , 1985, Journal of experimental psychology. Learning, memory, and cognition.

[3]  Ronald A. Rensink,et al.  Competition for consciousness among visual events: the psychophysics of reentrant visual processes. , 2000, Journal of experimental psychology. General.

[4]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[5]  Philippe G Schyns,et al.  Perceptual moments of conscious visual experience inferred from oscillatory brain activity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Kristina J. Nielsen,et al.  Discrimination Strategies of Humans and Rhesus Monkeys for Complex Visual Displays , 2006, Current Biology.

[7]  F. Gosselin,et al.  Aberrant Patterns of Visual Facial Information Usage in Schizophrenia , 2022 .

[8]  G Richard,et al.  Ultra-rapid categorisation of natural scenes does not rely on colour cues: a study in monkeys and humans , 2000, Vision Research.

[9]  Gregory C. DeAngelis,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[10]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[11]  R. Adolphs,et al.  Single-Neuron Correlates of Atypical Face Processing in Autism , 2013, Neuron.

[12]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[13]  Tony Ro,et al.  Feedback Contributions to Visual Awareness in Human Occipital Cortex , 2003, Current Biology.

[14]  S. Thorpe,et al.  Speed of processing in the human visual system , 1996, Nature.

[15]  J. Bullier,et al.  Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. , 2001, Journal of neurophysiology.

[16]  D. Mumford,et al.  The role of the primary visual cortex in higher level vision , 1998, Vision Research.

[17]  Frédéric Gosselin,et al.  Bubbles: a technique to reveal the use of information in recognition tasks , 2001, Vision Research.

[18]  Michael L. Mack,et al.  The dynamics of categorization: Unraveling rapid categorization. , 2015, Journal of experimental psychology. General.

[19]  M. Bar,et al.  Magnocellular Projections as the Trigger of Top-Down Facilitation in Recognition , 2007, The Journal of Neuroscience.

[20]  Edward E. Smith,et al.  Basic-level superiority in picture categorization , 1982 .

[21]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[22]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[23]  Emily D Grossman,et al.  Temporal "Bubbles" reveal key features for point-light biological motion perception. , 2008, Journal of vision.

[24]  Carolyn B. Mervis,et al.  Effects of varying levels of expertise on the basic level of categorization. , 1997 .

[25]  Caroline Blais,et al.  Human visual processing oscillates: Evidence from a classification image technique , 2013, Cognition.

[26]  G. Murphy Parts in object concepts: Experiments with artificial categories , 1991, Memory & cognition.

[27]  Alan Cowey,et al.  Magnetic stimulation studies of visual cognition , 1998, Trends in Cognitive Sciences.

[28]  Samuel J. Gershman,et al.  Computational rationality: A converging paradigm for intelligence in brains, minds, and machines , 2015, Science.

[29]  John R. Anderson,et al.  The Adaptive Character of Thought , 1990 .

[30]  Refractor Vision , 2000, The Lancet.

[31]  P Girard,et al.  Feedback connections act on the early part of the responses in monkey visual cortex. , 2001, Journal of neurophysiology.

[32]  P. Schyns,et al.  Show Me the Features! Understanding Recognition From the Use of Visual Information , 2002, Psychological science.

[33]  Arnaud Delorme,et al.  Feed-forward contour integration in primary visual cortex based on asynchronous spike propagation , 2001, Neurocomputing.

[34]  O. Langner,et al.  Social Anxiety and Anger Identification , 2009, Psychological science.

[35]  R Goebel,et al.  Inverse mapping the neuronal substrates of face categorizations. , 2009, Cerebral cortex.

[36]  C. Mervis,et al.  Order of acquisition of subordinate-, basic-, and superordinate-level categories. , 1982 .

[37]  Hsuan-Chih Chen,et al.  Brain Responses to Segmentally and Tonally Induced Semantic Violations in Cantonese , 2005, Journal of Cognitive Neuroscience.

[38]  D. Simons Attentional capture and inattentional blindness , 2000, Trends in Cognitive Sciences.

[39]  D. Fiset,et al.  Efficient information for recognizing pain in facial expressions , 2015, European journal of pain.

[40]  Olivier R. Joubert,et al.  The Time-Course of Visual Categorizations: You Spot the Animal Faster than the Bird , 2009, PloS one.

[41]  Frédéric Gosselin,et al.  Atypical Time Course of Object Recognition in Autism Spectrum Disorder , 2016, Scientific Reports.

[42]  Ronald A. Rensink,et al.  TO SEE OR NOT TO SEE: The Need for Attention to Perceive Changes in Scenes , 1997 .

[43]  D. Fiset,et al.  The eyes are not the window to basic emotions , 2012, Neuropsychologia.

[44]  A. Chatziastros,et al.  Visual object detection, categorization, and identification tasks are associated with different time courses and sensitivities. , 2011, Journal of experimental psychology. Human perception and performance.

[45]  R Van Rullen,et al.  Face processing using one spike per neurone. , 1998, Bio Systems.

[46]  Daniel J. Simons,et al.  Current Approaches to Change Blindness , 2000 .

[47]  Shuo Wang,et al.  Neurons in the human amygdala selective for perceived emotion , 2014, Proceedings of the National Academy of Sciences.

[48]  Floris P. de Lange,et al.  Prior Expectations Evoke Stimulus Templates in the Primary Visual Cortex , 2014, Journal of Cognitive Neuroscience.

[49]  Nathalie Guyader,et al.  The Neural Bases of the Semantic Interference of Spatial Frequency-based Information in Scenes , 2015, Journal of Cognitive Neuroscience.

[50]  W. Geisler,et al.  Bayesian natural selection and the evolution of perceptual systems. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[51]  S. Thorpe,et al.  A Limit to the Speed of Processing in Ultra-Rapid Visual Categorization of Novel Natural Scenes , 2001, Journal of Cognitive Neuroscience.

[52]  Michael F. Green,et al.  How do schizophrenia patients use visual information to decode facial emotion? , 2011, Schizophrenia bulletin.

[53]  E. Rolls,et al.  Speed of feedforward and recurrent processing in multilayer networks of integrate-and-fire neurons , 2001, Network.

[54]  S. Kosslyn,et al.  Topographical representations of mental images in primary visual cortex , 1995, Nature.

[55]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[56]  P. Schyns,et al.  Receptive Fields for Flexible Face Categorizations , 2004, Psychological science.

[57]  Marie L. Smith,et al.  From a face to its category via a few information processing states in the brain , 2007, NeuroImage.

[58]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[59]  P. Schyns,et al.  A principled method for determining the functionality of brain responses , 2003, Neuroreport.

[60]  P. Schyns,et al.  A mechanism for impaired fear recognition after amygdala damage , 2005, Nature.

[61]  M. Gluck,et al.  Explaining Basic Categories: Feature Predictability and Information , 1992 .

[62]  J. Bullier Feedback connections and conscious vision , 2001, Trends in Cognitive Sciences.

[63]  Greg L. West,et al.  Affective and contextual values modulate spatial frequency use in object recognition , 2014, Front. Psychol..

[64]  M. Bar A Cortical Mechanism for Triggering Top-Down Facilitation in Visual Object Recognition , 2003, Journal of Cognitive Neuroscience.

[65]  P. H. Schiller,et al.  Spatial frequency and orientation tuning dynamics in area V1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Philippe G Schyns,et al.  Accurate statistical tests for smooth classification images. , 2005, Journal of vision.

[67]  Jacob Feldman,et al.  Minimization of Boolean complexity in human concept learning , 2000, Nature.

[68]  C. Koch,et al.  Competition and selection during visual processing of natural scenes and objects. , 2003, Journal of vision.

[69]  Frédéric Gosselin,et al.  Spatio-temporal dynamics of face recognition in a flash: it's in the eyes , 2004, Cogn. Sci..

[70]  J R Lishman,et al.  Temporal Integration of Spatially Filtered Visual Images , 1992, Perception.

[71]  Caroline Blais,et al.  Features for uppercase and lowercase letter identification , 2008 .

[72]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[73]  Leila Reddy,et al.  Face-gender discrimination is possible in the near-absence of attention. , 2004, Journal of vision.

[74]  Wilson S. Geisler,et al.  A Bayesian approach to the evolution of perceptual and cognitive systems , 2003, Cogn. Sci..

[75]  N. Cowan The magical number 4 in short-term memory: A reconsideration of mental storage capacity , 2001, Behavioral and Brain Sciences.

[76]  Hans P. Op de Beeck,et al.  A Multivariate Approach Reveals the Behavioral Templates Underlying Visual Discrimination in Rats , 2012, Current Biology.

[77]  N. Dupuis-Roy,et al.  Uncovering gender discrimination cues in a realistic setting. , 2009, Journal of vision.

[78]  Philippe G Schyns,et al.  Applying bubbles to localize features that control pigeons' visual discrimination behavior. , 2005, Journal of experimental psychology. Animal behavior processes.

[79]  Arnaud Delorme,et al.  Face identification using one spike per neuron: resistance to image degradations , 2001, Neural Networks.

[80]  R VanRullen,et al.  Is it a Bird? Is it a Plane? Ultra-Rapid Visual Categorisation of Natural and Artifactual Objects , 2001, Perception.

[81]  Erin M. Harley,et al.  How different spatial-frequency components contribute to visual information acquisition. , 2004, Journal of experimental psychology. Human perception and performance.

[82]  D. Broadbent Perception and communication , 1958 .

[83]  Daniel A Pollen,et al.  Explicit neural representations, recursive neural networks and conscious visual perception. , 2003, Cerebral cortex.

[84]  Lars Muckli,et al.  Classification images reveal the information sensitivity of brain voxels in fMRI , 2008, NeuroImage.

[85]  Kristina J. Nielsen,et al.  Dissociation Between Local Field Potentials and Spiking Activity in Macaque Inferior Temporal Cortex Reveals Diagnosticity-Based Encoding of Complex Objects , 2006, The Journal of Neuroscience.

[86]  R. Shapley,et al.  Dynamics of orientation tuning in macaque V1: the role of global and tuned suppression. , 2003, Journal of neurophysiology.

[87]  Steven B. Most,et al.  What you see is what you set: sustained inattentional blindness and the capture of awareness. , 2005, Psychological review.

[88]  Christoph M. Michel,et al.  The Neural Substrates and Timing of Top–Down Processes during Coarse-to-Fine Categorization of Visual Scenes: A Combined fMRI and ERP Study , 2010, Journal of Cognitive Neuroscience.

[89]  Daniel Fiset,et al.  Reading laterally: the cerebral hemispheric use of spatial frequencies in visual word recognition. , 2013, Journal of vision.

[90]  P. Schyns,et al.  Nonaccidental Properties Underlie Shape Recognition in Mammalian and Nonmammalian Vision , 2007, Current Biology.

[91]  Frédéric Gosselin,et al.  Hand Position Alters Vision by Modulating the Time Course of Spatial Frequency Use , 2017, Journal of experimental psychology. General.

[92]  Bruno Rossion,et al.  Does Prosopagnosia Take the Eyes Out of Face Representations? Evidence for a Defect in Representing Diagnostic Facial Information following Brain Damage , 2005, Journal of Cognitive Neuroscience.

[93]  Gregory V. Jones Identifying basic categories. , 1983 .

[94]  Ma Gluck,et al.  Learning of basic levels in hierarchically structured categories , 1988 .

[95]  P. Perona,et al.  Rapid natural scene categorization in the near absence of attention , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[96]  A. Oliva,et al.  From Blobs to Boundary Edges: Evidence for Time- and Spatial-Scale-Dependent Scene Recognition , 1994 .

[97]  Kathy E. Johnson,et al.  Effects of varying levels of expertise on the basic level of categorization. , 1997, Journal of experimental psychology. General.

[98]  Janneke F. M. Jehee,et al.  Less Is More: Expectation Sharpens Representations in the Primary Visual Cortex , 2012, Neuron.

[99]  John R. Anderson,et al.  The Adaptive Nature of Human Categorization. , 1991 .

[100]  William K. Estes,et al.  Classification and cognition , 1994 .

[101]  Z. Pylyshyn,et al.  Multiple object tracking and attentional processing. , 2000, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[102]  F. Gosselin,et al.  Why do we SLIP to the basic level? Computational constraints and their implementation. , 2001, Psychological review.

[103]  D. Bub,et al.  Features for Identification of Uppercase and Lowercase Letters , 2008, Psychological science.

[104]  Stephen M. Kosslyn,et al.  Pictures and names: Making the connection , 1984, Cognitive Psychology.

[105]  Richard F Murray Classification images and bubbles images in the generalized linear model. , 2012, Journal of vision.

[106]  J. Tanaka,et al.  Object categories and expertise: Is the basic level in the eye of the beholder? , 1991, Cognitive Psychology.

[107]  D. Bub,et al.  Does face inversion change spatial frequency tuning? , 2010, Journal of experimental psychology. Human perception and performance.

[108]  H. Hughes,et al.  Global Precedence, Spatial Frequency Channels, and the Statistics of Natural Images , 1996, Journal of Cognitive Neuroscience.

[109]  Nick Chater,et al.  A simplicity principle in unsupervised human categorization , 2002, Cogn. Sci..

[110]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[111]  I. Rock,et al.  Inattentional blindness: Perception without attention. , 1998 .

[112]  Douglas L. Medin,et al.  Context theory of classification learning. , 1978 .

[113]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[114]  Colin Blakemore,et al.  Statistical limits to image understanding , 1991 .

[115]  Caroline Blais,et al.  Reading between Eye Saccades , 2009, PloS one.

[116]  Thomas A. Carlson,et al.  Representational dynamics of object recognition: Feedforward and feedback information flows , 2016, NeuroImage.

[117]  F. Gosselin Why do we SLIP to the basic level? : a formal model , 2000 .

[118]  Frédéric Gosselin,et al.  A Principled Method for Determining the Functionality of ERP Components. , 2003 .

[119]  N. Kanwisher,et al.  Stages of processing in face perception: an MEG study , 2002, Nature Neuroscience.

[120]  Joseph E. LeDoux,et al.  How danger is encoded: towards a systems, cellular, and computational understanding of cognitive-emotional interactions , 1999 .

[121]  J R Lishman,et al.  Evidence for the View That Temporospatial Integration in Vision is Temporally Anisotropic , 1997, Perception.

[122]  D. Simons,et al.  CHAPTER 13 – Change Blindness , 2005 .