Neural Network-based Approaches to Fault Diagnosis

Apart from the unquestionable effectiveness of the approaches presented in the preceding chapter, there are examples for which fault directions are very similar to that of an unknown input.

[1]  Héctor J. Sussmann,et al.  Uniqueness of the weights for minimal feedforward nets with a given input-output map , 1992, Neural Networks.

[2]  Amparo Alonso-Betanzos,et al.  Linear-least-squares initialization of multilayer perceptrons through backpropagation of the desired response , 2005, IEEE Transactions on Neural Networks.

[3]  R. Fletcher Practical Methods of Optimization , 1988 .

[4]  Marcin Witczak,et al.  Designing neural-network-based fault detection systems with D-optimum experimental conditions , 2005 .

[5]  J. P. Norton,et al.  Fast and robust algorithm to compute exact polytope parameter bounds , 1990 .

[6]  Joseba Quevedo,et al.  Development and Application of Methods for Actuator Diagnosis in Industrial Control Systems (DAMADICS): A Benchmark Study , 2003 .

[7]  D. M. Titterington,et al.  Recent advances in nonlinear experiment design , 1989 .

[8]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[9]  Graham C. Goodwin,et al.  Dynamic System Identification: Experiment Design and Data Analysis , 2012 .

[10]  Marcin Witczak,et al.  Toward the training of feed-forward neural networks with the D-optimum input sequence , 2006, IEEE Transactions on Neural Networks.

[11]  Kenji Fukumizu,et al.  A Regularity Condition of the Information Matrix of a Multilayer Perceptron Network , 1996, Neural Networks.

[12]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[13]  Jan Pinborg Introduction to the Text , 1975 .

[14]  Marcin Witczak Identification and Fault Detection of Non-Linear Dynamic Systems , 2003 .

[15]  Józef Korbicz,et al.  Confidence estimation of the multi-layer perceptron and its application in fault detection systems , 2008, Eng. Appl. Artif. Intell..

[16]  P. Laycock,et al.  Optimum Experimental Designs , 1995 .

[17]  Eligius M. T. Hendrix,et al.  Global Optimization Problems in Optimal Design of Experiments in Regression Models , 2000, J. Glob. Optim..

[18]  Madan M. Gupta,et al.  Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory , 2003 .

[19]  Paul M. Frank,et al.  Nonlinear observers for fault detection and isolation , 1999 .

[20]  Józef Korbicz,et al.  Observers and Genetic Programming in the Identification and Fault Diagnosis of Non-Linear Dynamic Systems , 2004 .

[21]  Ryszard Rybski,et al.  Impedance Measurement With the D-Optimum Experimental Conditions , 2009, IEEE Transactions on Instrumentation and Measurement.

[22]  D. Ucinski Optimal measurement methods for distributed parameter system identification , 2004 .

[23]  Robert M. Pap,et al.  Fault Diagnosis , 1990, Bayesian Networks in Fault Diagnosis.

[24]  Sylviane Gentil,et al.  Reformulation of parameter identification with unknown-but-bounded errors , 1988 .

[25]  Joseba Quevedo,et al.  Introduction to the DAMADICS actuator FDI benchmark study , 2006 .

[26]  George Chryssolouris,et al.  Confidence interval prediction for neural network models , 1996, IEEE Trans. Neural Networks.

[27]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[28]  E. Walter,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .

[29]  J. Norton,et al.  Bounding Approaches to System Identification , 1996 .

[30]  Duc Truong Pham,et al.  Neural Networks for Identification, Prediction and Control , 1995 .

[31]  Marcin Witczak Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems: From Analytical to Soft Computing Approaches , 2007 .

[32]  Józef Korbicz,et al.  A GMDH neural network-based approach to robust fault diagnosis : Application to the DAMADICS benchmark problem , 2006 .

[33]  Marcin Witczak,et al.  State-Space GMDH Neural Networks for Actuator Robust Fault Diagnosis , 2012 .

[34]  Józef Korbicz,et al.  A novel genetic programming approach to nonlinear system modelling: application to the DAMADICS benchmark problem , 2004, Eng. Appl. Artif. Intell..

[35]  Marcin Mrugalski,et al.  An unscented Kalman filter in designing dynamic GMDH neural networks for robust fault detection , 2013, Int. J. Appl. Math. Comput. Sci..

[36]  Kenji Fukumizu,et al.  Active Learning in Multilayer Perceptrons , 1995, NIPS.

[37]  Kenji Fukumizu,et al.  Statistical active learning in multilayer perceptrons , 2000, IEEE Trans. Neural Networks Learn. Syst..

[38]  Vicenç Puig,et al.  A GMDH neural network-based approach to passive robust fault detection using a constraint satisfaction backward test , 2007, Eng. Appl. Artif. Intell..

[39]  Alan F. Murray,et al.  Confidence estimation methods for neural networks : a practical comparison , 2001, ESANN.

[40]  Eric Walter,et al.  Eliminating Suboptimal Local Minimizers in Nonlinear Parameter Estimation , 2001, Technometrics.

[41]  A. Ivakhnenko,et al.  Self-organization of nets of active neurons , 1995 .

[42]  Sylviane Gentil,et al.  Recursive membership estimation for output-error models , 1990 .