Exactly sparse Gaussian variational inference with application to derivative-free batch nonlinear state estimation

We present a Gaussian variational inference (GVI) technique that can be applied to large-scale nonlinear batch state estimation problems. The main contribution is to show how to fit both the mean and (inverse) covariance of a Gaussian to the posterior efficiently, by exploiting factorization of the joint likelihood of the state and data, as is common in practical problems. This is different than maximum a posteriori (MAP) estimation, which seeks the point estimate for the state that maximizes the posterior (i.e., the mode). The proposed exactly sparse Gaussian variational inference (ESGVI) technique stores the inverse covariance matrix, which is typically very sparse (e.g., block-tridiagonal for classic state estimation). We show that the only blocks of the (dense) covariance matrix that are required during the calculations correspond to the non-zero blocks of the inverse covariance matrix, and further show how to calculate these blocks efficiently in the general GVI problem. ESGVI operates iteratively, and while we can use analytical derivatives at each iteration, Gaussian cubature can be substituted, thereby producing an efficient derivative-free batch formulation. ESGVI simplifies to precisely the Rauch–Tung–Striebel (RTS) smoother in the batch linear estimation case, but goes beyond the ‘extended’ RTS smoother in the nonlinear case because it finds the best-fit Gaussian (mean and covariance), not the MAP point estimate. We demonstrate the technique on controlled simulation problems and a batch nonlinear simultaneous localization and mapping problem with an experimental dataset.

[1]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[2]  Kurt Konolige,et al.  Calibrating a Multi-arm Multi-sensor Robot: A Bundle Adjustment Approach , 2010, ISER.

[3]  Guillaume Bourmaud Online Variational Bayesian Motion Averaging , 2016, ECCV.

[4]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[5]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[6]  G. Wanner,et al.  200 years of least squares method , 2002 .

[7]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[8]  Simo Särkkä,et al.  Batch Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression , 2014, Robotics: Science and Systems.

[9]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[10]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[11]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[12]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[13]  Thomas B. Schön,et al.  System identification of nonlinear state-space models , 2011, Autom..

[14]  Simo Särkkä,et al.  Gaussian filtering and variational approximations for Bayesian smoothing in continuous-discrete stochastic dynamic systems , 2014, Signal Process..

[15]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[16]  Zoubin Ghahramani,et al.  Learning Nonlinear Dynamical Systems Using an EM Algorithm , 1998, NIPS.

[17]  Byron Boots,et al.  Continuous-time Gaussian process motion planning via probabilistic inference , 2017, Int. J. Robotics Res..

[18]  Timothy D. Barfoot,et al.  State Estimation for Robotics , 2017 .

[19]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[20]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[21]  Gérard Meurant,et al.  A Review on the Inverse of Symmetric Tridiagonal and Block Tridiagonal Matrices , 1992, SIAM J. Matrix Anal. Appl..

[22]  พงศ์ศักดิ์ บินสมประสงค์,et al.  FORMATION OF A SPARSE BUS IMPEDANCE MATRIX AND ITS APPLICATION TO SHORT CIRCUIT STUDY , 1980 .

[23]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 2019, Wiley Series in Probability and Statistics.

[24]  Sebastian Thrun,et al.  The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures , 2006, Int. J. Robotics Res..

[25]  Ming Xin,et al.  High-degree cubature Kalman filter , 2013, Autom..

[26]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[27]  Tim D. Barfoot,et al.  At all Costs: A Comparison of Robust Cost Functions for Camera Correspondence Outliers , 2015, 2015 12th Conference on Computer and Robot Vision.

[28]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[29]  Carl Friedrich Gauss Theoria motus corporum coelestium , 1981 .

[30]  Timothy D. Barfoot,et al.  Multivariate Gaussian Variational Inference by Natural Gradient Descent , 2020, ArXiv.

[31]  Ángel F. García-Fernández,et al.  Posterior Linearization Filter: Principles and Implementation Using Sigma Points , 2015, IEEE Transactions on Signal Processing.

[32]  Simo Särkkä,et al.  Batch nonlinear continuous-time trajectory estimation as exactly sparse Gaussian process regression , 2014, Autonomous Robots.

[33]  François Pomerleau,et al.  TSLAM: Tethered simultaneous localization and mapping for mobile robots , 2017, Int. J. Robotics Res..

[34]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[35]  K. F. Gauss,et al.  Theoria combinationis observationum erroribus minimis obnoxiae , 1823 .

[36]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[37]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[38]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[39]  Andrew J. Davison,et al.  FutureMapping 2: Gaussian Belief Propagation for Spatial AI , 2019, ArXiv.

[40]  Nocedal,et al.  Numerical Optimization, 2nd edition , 2020 .

[41]  Gaurav S. Sukhatme,et al.  The Iterated Sigma Point Kalman Filter with Applications to Long Range Stereo , 2006, Robotics: Science and Systems.

[42]  W. F. Tinney,et al.  On computing certain elements of the inverse of a sparse matrix , 1975, Commun. ACM.

[43]  Kaichang Di,et al.  Rigorous Photogrammetric Processing of HiRISE Stereo Imagery for Mars Topographic Mapping , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Byron Boots,et al.  Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs , 2016, Robotics: Science and Systems.

[45]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[46]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[47]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[48]  Ronald Cools,et al.  Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.

[49]  A. O'Hagan,et al.  Bayes–Hermite quadrature , 1991 .

[50]  Matthew R. Walter,et al.  Exactly Sparse Extended Information Filters for Feature-based SLAM , 2007, Int. J. Robotics Res..

[51]  S. Julier,et al.  A General Method for Approximating Nonlinear Transformations of Probability Distributions , 1996 .

[52]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[53]  Manfred Opper,et al.  The Variational Gaussian Approximation Revisited , 2009, Neural Computation.

[54]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[55]  Frank Dellaert,et al.  Loopy SAM , 2007, IJCAI.

[56]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[57]  Arno Solin,et al.  Expectation maximization based parameter estimation by sigma-point and particle smoothing , 2014, 17th International Conference on Information Fusion (FUSION).

[58]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[59]  F. Broussolle,et al.  State Estimation in Power Systems: Detecting Bad Data through the Sparse Inverse Matrix Method , 1978, IEEE Transactions on Power Apparatus and Systems.

[60]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping with fluid relinearization and incremental variable reordering , 2011, 2011 IEEE International Conference on Robotics and Automation.

[61]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[62]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[63]  Frank Dellaert,et al.  Covariance recovery from a square root information matrix for data association , 2009, Robotics Auton. Syst..

[64]  Kyu-Hong Choi,et al.  Performance Comparison of the Batch Filter Based on the Unscented Transformation and Other Batch Filters for Satellite Orbit Determination , 2009 .

[65]  Simo Särkkä,et al.  Fourier-Hermite Kalman Filter , 2012, IEEE Transactions on Automatic Control.

[66]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[67]  Hugh Durrant-Whyte,et al.  Simultaneous Localisation and Mapping ( SLAM ) : Part I The Essential Algorithms , 2006 .

[68]  Jouni Hartikainen,et al.  On the relation between Gaussian process quadratures and sigma-point methods , 2015, 1504.05994.

[69]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[70]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[71]  J. Jensen Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .

[72]  Arno Solin,et al.  Sigma-Point Filtering and Smoothing Based Parameter Estimation in Nonlinear Dynamic Systems , 2015, 1504.06173.

[73]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[74]  Đani Juričić,et al.  Application of Unscented Transformation in Nonlinear System Identification , 2011 .

[75]  Yuanxin Wu,et al.  A Numerical-Integration Perspective on Gaussian Filters , 2006, IEEE Transactions on Signal Processing.

[76]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .