Design Baseline Computed Torque Controller

The application of design nonlinear controller such as computed torque controller in control of 6 degrees of freedom (DOF) robot arm will be investigated in this research. One of the significant challenges in control algorithms is a linear behavior controller design for nonlinear systems (e.g., robot manipulator). Some of robot manipulators which work in industrial processes are controlled by linear PID controllers, but the design of linear controller for robot manipulators is extremely difficult because they are hardly nonlinear and uncertain. To reduce the above challenges, the nonlinear robust controller is used to control of robot manipulator. Computed torque controller is a powerful nonlinear controller under condition of partly uncertain dynamic parameters of system. This controller is used to control of highly nonlinear systems especially for robot manipulators. To adjust this controller’s coefficient baseline methodology is used and applied to CTC.

[1]  Farzin Piltan,et al.  Design artificial robust control of second order system based on adaptive fuzzy gain scheduling , 2011 .

[2]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[3]  Farzin Piltan,et al.  Adaptive MIMO Fuzzy Compensate Fuzzy Sliding Mode Algorithm: Applied to Second Order Nonlinear System , 2011 .

[4]  Wen-Shyong Yu,et al.  Adaptive fuzzy sliding mode control for linear time-varying uncertain systems , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[5]  Abdul Rahman Ramli,et al.  Design adaptive fuzzy robust controllers for robot manipulator , 2011 .

[6]  Allon Guez,et al.  On the solution to the inverse kinematic problem , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[7]  Farzin Piltan,et al.  Designing On-Line Tunable Gain Fuzzy Sliding Mode Controller Using Sliding Mode Fuzzy Algorithm: Applied to Internal Combustion Engine , 2011 .

[8]  Ahmad B. Rad,et al.  Indirect adaptive fuzzy sliding mode control: Part I: fuzzy switching , 2001, Fuzzy Sets Syst..

[9]  Byung Kook Yoo,et al.  Adaptive control of robot manipulator using fuzzy compensator , 2000, IEEE Trans. Fuzzy Syst..

[10]  N. Olgac,et al.  A comparative study on simulations vs. experiments of SMCPE , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[11]  Farzin Piltan,et al.  Evolutionary Design of Backstepping Artificial Sliding Mode Based Position Algorithm: Applied to Robot Manipulator , 2011 .

[12]  Farzin Piltan,et al.  Evolutionary Design on-line Sliding Fuzzy Gain Scheduling Sliding Mode Algorithm: Applied to Internal Combustion Engine , 2011 .

[13]  Farzin Piltan,et al.  A New Estimate Sliding Mode Fuzzy Controller for Robotic Manipulator , 2012 .

[14]  Nabil Derbel,et al.  A decoupled fuzzy indirect adaptive sliding mode controller with application to robot manipulator , 2006, Int. J. Model. Identif. Control..

[15]  Farzin Piltan,et al.  Evolutionary Design of Mathematical tunable FPGA Based MIMO Fuzzy Estimator Sliding Mode Based Lyapunov Algorithm: Applied to Robot Manipulator , 2011 .

[16]  Farzin Piltan,et al.  Novel Nonlinear Controller Applied to Robot Manipulator : Design New Feedback Linearization Fuzzy Controller With Minimum Rule Base Tuning Method , 2012 .

[17]  A. Vivas,et al.  Predictive functional control of a PUMA robot , 2005 .

[18]  Farzin Piltan,et al.  On line Tuning Premise and Consequence FIS: Design Fuzzy Adaptive Fuzzy Sliding Mode Controller based on Lyaponuv Theory. , 2011 .

[19]  Farzin Piltan,et al.  Design and Implementation of Sliding Mode Algorithm: Applied to Robot Manipulator-A Review , 2011 .

[20]  Jean-Jacques E. Slotine,et al.  Sliding controller design for non-linear systems , 1984 .

[21]  Peter I. Corke,et al.  A search for consensus among model parameters reported for the PUMA 560 robot , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[22]  R. Palm,et al.  Sliding mode fuzzy control , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[23]  Farzin Piltan,et al.  Novel Sliding Mode Controller for robot manipulator using FPGA. , 2011 .

[24]  Peng-Yung Woo,et al.  An adaptive fuzzy sliding mode controller for robotic manipulators , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[25]  Ali Badri,et al.  Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot Manipulator , 2012 .

[26]  Richard P. Paul,et al.  A parallel solution to robot inverse kinematics , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[27]  Ali Badri,et al.  Design PID-Like Fuzzy Controller With Minimum Rule Base and Mathematical Proposed On-line Tunable Gain: Applied to Robot Manipulator , 2011 .

[28]  Farzin Piltan,et al.  Control of IC Engine: Design a Novel MIMO Fuzzy Backstepping Adaptive Based Fuzzy Estimator Variable Structure Control. , 2011 .

[29]  O. Kaynak,et al.  Guest editorial special section on computationally intelligent methodologies and sliding-mode control , 2001 .

[30]  Farzin Piltan,et al.  Position control of robot manipulator: Design a novel SISO adaptive sliding mode fuzzy PD fuzzy sliding mode control. , 2011 .

[31]  Jon Kieffer,et al.  A path following algorithm for manipulator inverse kinematics , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[32]  V. Utkin Variable structure systems with sliding modes , 1977 .

[33]  Farzin Piltan,et al.  Online Tuning Chattering Free Sliding Mode Fuzzy Control Design: Lyapunov Approach , 2012 .

[34]  James E. Bernard,et al.  Control system design for robots used in simulating dynamic force and moment interaction in virtual reality applications , 1996 .

[35]  Leonid M. Fridman,et al.  Analysis of Chattering in Systems With Second-Order Sliding Modes , 2007, IEEE Transactions on Automatic Control.

[36]  J. J. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983, 1983 American Control Conference.

[37]  Farzin Piltan,et al.  Methodology of FPGA-Based Mathematical Error-Based Tuning Sliding Mode Controller , 2012 .

[38]  Farzin Piltan,et al.  Methodology of Mathematical Error-Based Tuning Sliding Mode Controller , 2012 .

[39]  Okyay Kaynak,et al.  Neuro sliding mode control of robotic manipulators , 2000 .

[40]  Farzin Piltan,et al.  An Adaptive sliding surface slope adjustment in PD Sliding Mode Fuzzy Control for Robot Manipulator , 2011 .

[41]  Farzin Piltan,et al.  PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate/Undergraduate Nonlinear Control, Robotics and MATLAB Courses , 2012 .

[42]  Brian S. R. Armstrong,et al.  Dynamics for robot control: friction modeling and ensuring excitation during parameter identification , 1988 .

[43]  Farzin Piltan,et al.  Artificial Chattering Free on-line Fuzzy Sliding Mode Algorithm for Uncertain System: Applied in Robot Manipulator , 2011 .

[44]  Farzin Piltan,et al.  Design of FPGA-based Sliding Mode Controller for Robot Manipulator. , 2011 .

[45]  Farzin Piltan,et al.  Evaluation Performance of 2 nd Order Nonlinear System: Baseline Control Tunable Gain Sliding Mode Methodology , 2012 .

[46]  Farzin Piltan,et al.  Design Error-based Linear Model-free Evaluation Performance Computed Torque Controller , 2012 .

[47]  Constantine H. Houpis,et al.  Linear Control System Analysis and Design with MATLAB , 2013 .

[48]  Fan-Tien Cheng,et al.  Study and resolution of singularities for a 6-DOF PUMA manipulator , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[49]  Farzin Piltan,et al.  Design Mathematical Tunable Gain PID-Like Sliding Mode Fuzzy Controller with Minimum Rule base. , 2011 .

[50]  Abdul Rahman Ramli,et al.  Design On-Line Tunable Gain Artificial Nonlinear Controller , 2011 .

[51]  Farzin Piltan,et al.  Design a New Sliding Mode Adaptive Hybrid Fuzzy Controller , 2011 .

[52]  Hakan Elmali,et al.  Implementation of sliding mode control with perturbation estimation (SMCPE) , 1996, IEEE Trans. Control. Syst. Technol..

[53]  Abdul Rahman Ramli,et al.  A model-free robust sliding surface slope adjustment in sliding mode control for robot manipulator , 2011 .

[54]  Oussama Khatib,et al.  Springer Handbook of Robotics , 2007, Springer Handbooks.

[55]  Farzin Piltan,et al.  Design Artificial Nonlinear Robust Controller Based on CTLC and FSMC With Tunable Gain. , 2011 .

[56]  P. N. Paraskevopoulos,et al.  Modern Control Engineering , 2001 .

[57]  Howard M. Schwartz,et al.  An investigation of adaptive fuzzy sliding mode control for robotic manipulators , 2007 .

[58]  Farzin Piltan,et al.  Novel Robot Manipulator Adaptive Artificial Control: Design a Novel SISO Adaptive Fuzzy Sliding Algorithm Inverse Dynamic Like Method. , 2011 .

[59]  Farzin Piltan,et al.  Design Robust Backstepping on-line Tuning Feedback Linearization Control Applied to IC Engine , 2012 .

[60]  Farzin Piltan,et al.  Design Adaptive Fuzzy Inference Sliding Mode Algorithm: Applied to Robot Arm , 2011 .

[61]  Duy Nguyen-Tuong,et al.  Computed torque control with nonparametric regression models , 2008, 2008 American Control Conference.

[62]  A. Monti,et al.  FPGA based sliding mode control for high frequency power converters , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[63]  R. Decarlo,et al.  Variable structure control of nonlinear multivariable systems: a tutorial , 1988, Proc. IEEE.

[64]  Farzin Piltan,et al.  Design Model-free Fuzzy Sliding Mode Control: Applied to Internal Combustion Engine , 2011 .

[65]  California Plant CONFERENCE PROCEEDINGS 2005 , 2005 .

[66]  Chih-Min Lin,et al.  Adaptive fuzzy sliding-mode control for induction servomotor systems , 2004, IEEE Transactions on Energy Conversion.

[67]  Qingsong Xu,et al.  Adaptive Sliding Mode Control With Perturbation Estimation and PID Sliding Surface for Motion Tracking of a Piezo-Driven Micromanipulator , 2010, IEEE Transactions on Control Systems Technology.

[68]  Oussama Khatib,et al.  The explicit dynamic model and inertial parameters of the PUMA 560 arm , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[69]  Derong Liu,et al.  Multi-Agent Based Adaptive Consensus Control for Multiple Manipulators with Kinematic Uncertainties , 2008, 2008 IEEE International Symposium on Intelligent Control.

[70]  Masayoshi Tomizuka,et al.  Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems , 1996, IEEE Trans. Autom. Control..

[71]  Farzin Piltan,et al.  Design of Model Free Adaptive Fuzzy Computed Torque Controller: Applied to Nonlinear Second Order System , 2011 .

[72]  William K. Veitschegger,et al.  Robot accuracy analysis based on kinematics , 1986, IEEE J. Robotics Autom..

[73]  Farzin Piltan,et al.  Artificial Control of PUMA Robot Manipulator: A-Review of Fuzzy Inference Engine And Application to Classical Controller. , 2011 .

[74]  Vadim I. Utkin,et al.  A control engineer's guide to sliding mode control , 1999, IEEE Trans. Control. Syst. Technol..

[75]  Keding Zhao,et al.  An integral variable structure controller with fuzzy tuning design for electro-hydraulic driving Stewart platform , 2006, 2006 1st International Symposium on Systems and Control in Aerospace and Astronautics.