A Catalog of Complexity Classes

Publisher Summary This chapter discusses the concepts needed for defining the complexity classes. A complexity class is a set of problems of related resource-based complexity. A typical complexity class has a definition of the form—the set of problems that can be solved by an abstract machine M using O(f(n)) of resource R , where n is the size of the input. The simpler complexity classes are defined by various factors. The type of computational problem in which the most commonly used problems are decision problems. However, complexity classes can be defined based on function problems, counting problems, optimization problems, promise problems, etc. The most common model of computation is the deterministic Turing machine, but many complexity classes are based on nondeterministic Turing machines, etc.

[1]  J. Reif,et al.  On Threshold Circuits and Polynomial Computation , 1992, SIAM J. Comput..

[2]  Christos H. Papadimitriou,et al.  Games against nature , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[3]  John Staples,et al.  The Maximum Flow Problem is Log Space Complete for P , 1982, Theor. Comput. Sci..

[4]  J. Scott Provan,et al.  The Complexity of Reliability Computations in Planar and Acyclic Graphs , 1986, SIAM J. Comput..

[5]  Stephen A. Cook,et al.  Characterizations of Pushdown Machines in Terms of Time-Bounded Computers , 1971, J. ACM.

[6]  Michael Sipser,et al.  On Relativization and the Existence of Complete Sets , 1982, ICALP.

[7]  Lance Fortnow,et al.  The Complexity of Perfect Zero-Knowledge , 1987, Proceeding Structure in Complexity Theory.

[8]  John Michael Robson,et al.  N by N Checkers is Exptime Complete , 1984, SIAM J. Comput..

[9]  Eric Allender,et al.  The Complexity of Sparse Sets in P , 1986, SCT.

[10]  Leonard M. Adleman,et al.  Reductions that lie , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[11]  José L. Balcázar,et al.  Immunity and Simplicity in Relativizations of Probabilistic Complexity Classes , 1988, RAIRO Theor. Informatics Appl..

[12]  Pavel Pudlák,et al.  Threshold circuits of bounded depth , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[13]  Paul Young,et al.  Independence Results in Computer Science? , 1981, J. Comput. Syst. Sci..

[14]  Faith Ellen,et al.  Relations Between Concurrent-Write Models of Parallel Computation , 1988, SIAM J. Comput..

[15]  Neil Immerman,et al.  Expressibility as a complexity measure: results and directions , 1987, SCT.

[16]  László Babai,et al.  Random Oracles Separate PSPACE from the Polynomial-Time Hierarchy , 1987, Inf. Process. Lett..

[17]  Christos H. Papadimitriou,et al.  The Complexity of Facets Resolved , 1988, J. Comput. Syst. Sci..

[18]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[19]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[20]  Stephen A. Cook,et al.  Deterministic CFL's are accepted simultaneously in polynomial time and log squared space , 1979, STOC.

[21]  Walter L. Ruzzo On Uniform Circuit Complexity , 1981, J. Comput. Syst. Sci..

[22]  Neil Immerman,et al.  On Complete Problems for NP$\cap$CoNP , 1985, ICALP.

[23]  Endre Szemerédi,et al.  On determinism versus non-determinism and related problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[24]  Joe Kilian,et al.  Almost all primes can be quickly certified , 1986, STOC '86.

[25]  Nancy A. Lynch Log Space Machines with Multiple Oracle Tapes , 1978, Theor. Comput. Sci..

[26]  Lance Fortnow,et al.  Are There Interactive Protocols for CO-NP Languages? , 1988, Inf. Process. Lett..

[27]  Neil Immerman,et al.  Sparse Sets in NP-P: EXPTIME versus NEXPTIME , 1985, Inf. Control..

[28]  Stephen A. Cook,et al.  Problems Complete for Deterministic Logarithmic Space , 1987, J. Algorithms.

[29]  R. Ladner The circuit value problem is log space complete for P , 1975, SIGA.

[30]  Christopher B. Wilson A Measure of Relativized Space Which Is Faithful With Respect to Depth , 1988, J. Comput. Syst. Sci..

[31]  David S. Johnson,et al.  `` Strong '' NP-Completeness Results: Motivation, Examples, and Implications , 1978, JACM.

[32]  John H. Reif,et al.  Universal games of incomplete information , 1979, STOC.

[33]  Noam Nisan,et al.  Hardness vs. randomness , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[34]  Andrew Chi-Chih Yao,et al.  Theory and Applications of Trapdoor Functions (Extended Abstract) , 1982, FOCS.

[35]  Avi Wigderson,et al.  Succinct Representations of Graphs , 1984, Inf. Control..

[36]  Jim Kadin The Polynomial Time Hierarchy Collapses if the Boolean Hierarchy Collapses , 1988, SIAM J. Comput..

[37]  Hana Galperin Succinct representation of graphs , 1982 .

[38]  Steven Homer,et al.  Oracles for structural properties: the isomorphism problem and public-key cryptography , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[39]  Jean Berstel,et al.  Context-Free Languages , 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[40]  Nicholas Pippenger,et al.  On simultaneous resource bounds , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[41]  Ernst W. Mayr,et al.  The Complexity of Circuit Value and Network Stability , 1992, J. Comput. Syst. Sci..

[42]  Eli Upfal,et al.  The Complexity of Parallel Search , 1988, J. Comput. Syst. Sci..

[43]  Ian Parberry,et al.  On the Construction of Parallel Computers from Various Bases of Boolean Functions , 1986, Theor. Comput. Sci..

[44]  Juris Hartmanis,et al.  The Boolean Hierarchy II: Applications , 1989, SIAM J. Comput..

[45]  Juris Hartmanis,et al.  On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..

[46]  José L. Balcázar,et al.  Nondeterministic witnesses and nonuniform advice , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[47]  Jeffrey Shallit,et al.  Sums of Divisors, Perfect Numbers and Factoring , 1986, SIAM J. Comput..

[48]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[49]  Ronald Fagin,et al.  Bounded-Depth, Polynomial-Size Circuits for Symmetric Functions , 1985, Theoretical Computer Science.

[50]  Deborah Joseph,et al.  Corrigendum: Independence Results in Computer Science? , 1982, J. Comput. Syst. Sci..

[51]  Aviezri S. Fraenkel,et al.  Computing a Perfect Strategy for n x n Chess Requires Time Exponential in n , 1981, J. Comb. Theory, Ser. A.

[52]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[53]  Lane A. Hemaspaandra,et al.  On the power of probabilistic polynomial time: P/sup NP(log)/ contained in PP , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[54]  Samuel R. Buss,et al.  The Boolean formula value problem is in ALOGTIME , 1987, STOC.

[55]  R.E. Ladner,et al.  A Comparison of Polynomial Time Reducibilities , 1975, Theor. Comput. Sci..

[56]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[57]  Shafi Goldwasser,et al.  On the Power of Interaction , 1986, FOCS.

[58]  Leslie G. Valiant,et al.  A complexity theory based on Boolean algebra , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[59]  Ronald V. Book,et al.  Comparing Complexity Classes , 1974, J. Comput. Syst. Sci..

[60]  Peter van Emde Boas,et al.  Machine Models and Simulation , 1990, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[61]  Juris Hartmanis,et al.  Complexity Classes without Machines: On Complete Languages for UP , 1988, Theor. Comput. Sci..

[62]  Martin Tompa,et al.  A new pebble game that characterizes parallel complexity classes , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[63]  Seinosuke Toda On the computational power of PP and (+)P , 1989, 30th Annual Symposium on Foundations of Computer Science.

[64]  John C. Mitchell,et al.  On the Sequential Nature of Unification , 1984, J. Log. Program..

[65]  David Lichtenstein,et al.  GO Is Polynomial-Space Hard , 1980, JACM.

[66]  Jan van Leeuwen,et al.  Graph Algorithms , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[67]  Steven Fortune,et al.  Parallelism in random access machines , 1978, STOC.

[68]  Michael Sipser,et al.  Borel sets and circuit complexity , 1983, STOC.

[69]  Christos H. Papadimitriou,et al.  Symmetric Space-Bounded Computation , 1982, Theor. Comput. Sci..

[70]  Mark W. Krentel The Complexity of Optimization Problems , 1988, J. Comput. Syst. Sci..

[71]  Jianer Chen A new complete language for DSPACE(log n) , 1989, Discret. Appl. Math..

[72]  Johan Håstad,et al.  Perfect zero-knowledge languages can be recognized in two rounds , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[73]  Neil D. Jones,et al.  Space-Bounded Reducibility among Combinatorial Problems , 1975, J. Comput. Syst. Sci..

[74]  Janos Simon,et al.  Space-bounded probabilistic turing machine complexity classes are closed under complement (Preliminary Version) , 1981, STOC '81.

[75]  Richard M. Karp,et al.  A fast parallel algorithm for the maximal independent set problem , 1985, JACM.

[76]  Daniel Leivant,et al.  The Expressiveness of Simple and Second-Order Type Structures , 1983, JACM.

[77]  Leonard M. Adleman,et al.  Recognizing primes in random polynomial time , 1987, STOC.

[78]  Deborah Joseph Polynomial Time Computations in Models of ET , 1983, J. Comput. Syst. Sci..

[79]  Allan Borodin,et al.  On Relating Time and Space to Size and Depth , 1977, SIAM J. Comput..

[80]  Ronald V. Book,et al.  On Languages Accepted in Polynomial Time , 1972, SIAM J. Comput..

[81]  Silvio Micali,et al.  The Knowledge Complexity of Interactive Proof Systems , 1989, SIAM J. Comput..

[82]  Allan Borodin,et al.  Parallel Computation for Well-Endowed Rings and Space-Bounded Probabilistic Machines , 1984, Inf. Control..

[83]  Ravi B. Boppana,et al.  The Complexity of Finite Functions , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[84]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[85]  David S. Johnson The NP-Completeness Column: An Ongoing Guide , 1986, J. Algorithms.

[86]  Hao Wang Proving theorems by pattern recognition — II , 1961 .

[87]  László Babai,et al.  Permutation groups in NC , 1987, STOC '87.

[88]  Mihalis Yannakakis,et al.  The complexity of facets (and some facets of complexity) , 1982, STOC '82.

[89]  Andreas Blass,et al.  On the Unique Satisfiability Problem , 1982, Inf. Control..

[90]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[91]  Paul Young,et al.  Reductions Among Polynomial Isomorphism Types , 1985, Theor. Comput. Sci..

[92]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[93]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[94]  D. Kozen A clique problem equivalent to graph isomorphism , 1978, SIGA.

[95]  Stephen A. Cook,et al.  Complexity Theory of Parallel Time and Hardware , 1989, Inf. Comput..

[96]  Joel I. Seiferas,et al.  Relating Refined Space Complexity Classes , 1977, J. Comput. Syst. Sci..

[97]  Stephen A. Cook,et al.  Log Depth Circuits for Division and Related Problems , 1986, SIAM J. Comput..

[98]  Robert E. Tarjan,et al.  A Combinatorial Problem Which Is Complete in Polynomial Space , 1976, JACM.

[99]  Albert R. Meyer,et al.  WEAK MONADIC SECOND ORDER THEORY OF SUCCESSOR IS NOT ELEMENTARY-RECURSIVE , 1973 .

[100]  Stathis Zachos,et al.  Probabilistic Quantifiers and Games , 1988, J. Comput. Syst. Sci..

[101]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[102]  Rudolf Mathon,et al.  A Note on the Graph Isomorphism counting Problem , 1979, Inf. Process. Lett..

[103]  Moon-Jung Chung,et al.  Strong nondeterministic reduction - a technique for proving intractability , 1987, Computational Complexity Conference.

[104]  Kellogg S. Booth,et al.  Isomorphism Testing for Graphs, Semigroups, and Finite Automata Are Polynomially Equivalent Problems , 1978, SIAM J. Comput..

[105]  Michael Sipser,et al.  A complexity theoretic approach to randomness , 1983, STOC.

[106]  Thomas J. Schaefer,et al.  On the Complexity of Some Two-Person Perfect-Information Games , 1978, J. Comput. Syst. Sci..

[107]  Stathis Zachos,et al.  Does co-NP Have Short Interactive Proofs? , 1987, Inf. Process. Lett..

[108]  Leonard M. Adleman,et al.  Reducibility, randomness, and intractibility (Abstract) , 1977, STOC '77.

[109]  Stephen A. Cook,et al.  Storage Requirements for Deterministic Polynomial Time Recognizable Languages , 1976, J. Comput. Syst. Sci..

[110]  Carsten Lund,et al.  Nondeterministic exponential time has two-prover interactive protocols , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[111]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[112]  Miklos Santha Relativized Arthur-Merlin versus Merlin-Arthur Games , 1989, Inf. Comput..

[113]  Jin-Yi Cai,et al.  With probability one, a random oracle separates PSPACE from the polynomial-time hierarchy , 1986, STOC '86.

[114]  Mihalis Yannakakis,et al.  A Note on Succinct Representations of Graphs , 1986, Inf. Control..

[115]  Ker-I Ko Relativized Polynomial Time Hierarchies Having Exactly K Levels , 1989, SIAM J. Comput..

[116]  Daniel Leivant,et al.  Unprovability of Theorems of Complexity Theory in Weak Number Theories , 1982, Theor. Comput. Sci..

[117]  Larry J. Stockmeyer,et al.  Classifying the computational complexity of problems , 1987, The Journal of Symbolic Logic.

[118]  Sheila A. Greibach,et al.  The Hardest Context-Free Language , 1973, SIAM J. Comput..

[119]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[120]  John H. Reif Logarithmic Depth Circuits for Algebraic Functions , 1986, SIAM J. Comput..

[121]  Baruch Awerbuch,et al.  Finding euler circuits in logarithmic parallel time , 1984, STOC '84.

[122]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[123]  John Gill,et al.  Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..

[124]  Shafi Goldwasser,et al.  Private coins versus public coins in interactive proof systems , 1986, STOC '86.

[125]  Gary L. Miller Riemann's Hypothesis and Tests for Primality , 1976, J. Comput. Syst. Sci..

[126]  Vijay V. Vazirani,et al.  A Natural Encoding Scheme Proved Probabilistic Polynomial Complete , 1983, Theor. Comput. Sci..

[127]  Leonard Berman,et al.  The Complexity of Logical Theories , 1980, Theor. Comput. Sci..

[128]  Richard J. Lipton,et al.  Random walks, universal traversal sequences, and the complexity of maze problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[129]  Dana Angluin,et al.  On Counting Problems and the Polynomial-Time Hierarchy , 1980, Theor. Comput. Sci..

[130]  Ivan Hal Sudborough,et al.  On the Tape Complexity of Deterministic Context-Free Languages , 1978, JACM.

[131]  Clemens Lautemann,et al.  BPP and the Polynomial Hierarchy , 1983, Inf. Process. Lett..

[132]  Jacobo Torán,et al.  On Counting and Approximation , 1988, CAAP.

[133]  Endre Szemerédi,et al.  On the Complexity of Matrix Group Problems I , 1984, FOCS.

[134]  Stathis Zachos,et al.  A Decisive Characterization of BPP , 1986, Inf. Control..

[135]  Silvio Micali,et al.  Proofs that yield nothing but their validity and a methodology of cryptographic protocol design , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[136]  Richard J. Lipton,et al.  Linear Programming is Log-Space Hard for P , 1979, Inf. Process. Lett..

[137]  Neil D. Jones,et al.  Complete problems for deterministic polynomial time , 1974, Symposium on the Theory of Computing.

[138]  Jonathan F. Buss,et al.  Relativized Alternation and Space-Bounded Computation , 1988, J. Comput. Syst. Sci..

[139]  Vaughan R. Pratt,et al.  Every Prime has a Succinct Certificate , 1975, SIAM J. Comput..

[140]  Joachim Grollmann,et al.  Relativizations of Unambiguous and Random Polynomial Time Classes , 1986, SIAM J. Comput..

[141]  Martin E. Dyer,et al.  On the Complexity of Computing the Volume of a Polyhedron , 1988, SIAM J. Comput..

[142]  Stephen R. Mahaney Sparse Complete Sets of NP: Solution of a Conjecture of Berman and Hartmanis , 1982, J. Comput. Syst. Sci..

[143]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[144]  Richard Beigel,et al.  On the relativized power of additional accepting paths , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[145]  Arto Salomaa Formal Languages and Power Series , 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[146]  Yacov Yacobi,et al.  The Complexity of Promise Problems with Applications to Public-Key Cryptography , 1984, Inf. Control..

[147]  Lane A. Hemachandra,et al.  Structure of Complexity Classes: Separations, Collapses, and Completeness , 1988 .

[148]  Stephen A. Cook,et al.  An Observation on Time-Storage Trade Off , 1974, J. Comput. Syst. Sci..

[149]  Ker-I Ko,et al.  Some Observations on the Probabilistic Algorithms and NP-hard Problems , 1982, Inf. Process. Lett..

[150]  Celia Wrathall,et al.  Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[151]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[152]  Deborah Joseph,et al.  Some Remarks on Witness Functions for Nonpolynomial and Noncomplete Sets in NP , 1985, Theor. Comput. Sci..

[153]  Andrew Chi-Chih Yao,et al.  Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.

[154]  Larry J. Stockmeyer,et al.  On Approximation Algorithms for #P , 1985, SIAM J. Comput..

[155]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[156]  Jeanne Ferrante,et al.  A Decision Procedure for the First Order Theory of Real Addition with Order , 1975, SIAM J. Comput..

[157]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[158]  Francis Y. L. Chin,et al.  Efficient parallel algorithms for some graph problems , 1982, CACM.

[159]  Robert E. Tarjan,et al.  The Pebbling Problem is Complete in Polynomial Space , 1980, SIAM J. Comput..

[160]  Leslie G. Valiant,et al.  Relative Complexity of Checking and Evaluating , 1976, Inf. Process. Lett..

[161]  Christos H. Papadimitriou,et al.  On the complexity of unique solutions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[162]  John Gill,et al.  Computational Complexity of Probabilistic Turing Machines , 1977, SIAM J. Comput..

[163]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[164]  Leonard M. Adleman,et al.  Two theorems on random polynomial time , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[165]  Jacobo Torán,et al.  Turning machines with few accepting computations and low sets for PP , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[166]  Juris Hartmanis Independence Results About Context-Free Languages and Lower Bounds , 1985, Inf. Process. Lett..

[167]  Walter L. Ruzzo,et al.  Tree-size bounded alternation(Extended Abstract) , 1979, J. Comput. Syst. Sci..

[168]  Richard M. Karp,et al.  On the Computational Complexity of Combinatorial Problems , 1975, Networks.

[169]  Robert W. Irving An Efficient Algorithm for the "Stable Roommates" Problem , 1985, J. Algorithms.

[170]  Stuart A. Kurtz On the Random Oracle Hypothesis , 1983, Inf. Control..

[171]  Alan L. Selman,et al.  Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..

[172]  Kenneth W. Regan The Topology of Provability in Complexity Theory , 1988, J. Comput. Syst. Sci..

[173]  J. Hopcroft,et al.  Independence results in computer science , 1976, SIGA.

[174]  Ronald V. Book,et al.  Translational Lemmas, Polynomial Time, and (log n)^j-Space , 1976, Theor. Comput. Sci..

[175]  José L. Balcázar Logspace self-reducibility , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[176]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[177]  Janos Simon On some central problems in computational complexity , 1975 .

[178]  Janos Simon,et al.  On Tape-Bounded Probabilistic Turing Machine Acceptors , 1981, Theor. Comput. Sci..

[179]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[180]  Volker Strassen,et al.  A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..

[181]  L. Goldschlager The monotone and planar circuit value problems are log space complete for P , 1977, SIGA.

[182]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[183]  Paul Young,et al.  Some structural properties of polynomial reducibilities and sets in NP , 1983, STOC.

[184]  Christopher B. Wilson Relativized circuit complexity , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[185]  Leonard M. Adleman,et al.  NP-Complete Decision Problems for Binary Quadratics , 1978, J. Comput. Syst. Sci..

[186]  Daniel J. Moore,et al.  Optimization Problems and the Polynomial Hierarchy , 1981, Theor. Comput. Sci..

[187]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[188]  Timothy J. Long Strong Nondeterministic Polynomial-Time Reducibilities , 1982, Theor. Comput. Sci..

[189]  Lane A. Hemachandra,et al.  The strong exponential hierarchy collapses , 1989 .

[190]  M. Rabin Probabilistic algorithm for testing primality , 1980 .

[191]  Howard J. Karloff A las vegas rnc algorithm for maximum matching , 1986, Comb..

[192]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[193]  Michael J. Fischer,et al.  Separating Nondeterministic Time Complexity Classes , 1978, JACM.

[194]  Eli Upfal,et al.  Constructing a perfect matching is in random NC , 1985, STOC '85.

[195]  Richard J. Lipton,et al.  The consistency of "P = NP" and related problems with fragments of number theory , 1980, STOC '80.

[196]  László Babai,et al.  Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes , 1988, J. Comput. Syst. Sci..

[197]  Allan Borodin,et al.  Two Applications of Inductive Counting for Complementation Problems , 1989, SIAM J. Comput..