A global approach to path planning for redundant manipulators

An approach to the path planning of redundant manipulators is presented. The path planning problem is posed as a finite-time nonlinear control problem which can be solved by a Newton-Raphson type algorithm. This technique is capable of handling various goal task definitions, as well as incorporating both joint and task space constraints. The algorithm shows promising results in planning joint path sequences and Cartesian tip tracking and goal endpoint specifications. In contrast to local approaches, this algorithm is less prone to problems such as singularities and local minima. Applications to planar 3-R and 4-R arms, cooperating 3-R arms and a spatial nine-degrees-of-freedom arm are included.<<ETX>>

[1]  Russell H. Taylor,et al.  Geometric issues in planning robot tasks , 1989 .

[2]  John M. Hollerbach,et al.  Redundancy resolution of manipulators through torque optimization , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[3]  Pradeep K. Khosla,et al.  Real-time obstacle avoidance using harmonic potential functions , 1991, IEEE Trans. Robotics Autom..

[4]  John T. Wen,et al.  A global approach to path planning for redundant manipulators , 1995, IEEE Trans. Robotics Autom..

[5]  Andrew K. C. Wong,et al.  A global approach for the optimal path generation of redundant robot manipulators , 1990, J. Field Robotics.

[6]  Jean-Claude Latombe,et al.  A Monte-Carlo algorithm for path planning with many degrees of freedom , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[7]  Avinash C. Kak,et al.  A robot vision system for recognition of generic shaped objects , 1991, CVGIP Image Underst..

[8]  Jonathan Weaver,et al.  A method for planning collision free trajectories for two cooperating robots , 1992 .

[9]  John Baillieul,et al.  Kinematic programming alternatives for redundant manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[10]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[11]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[12]  Zhaoyu Wang,et al.  Global versus Local Optimization in Redundancy Resolution of Robotic Manipulators , 1988, Int. J. Robotics Res..

[13]  John M. Hollerbach,et al.  Local versus global torque optimization of redundant manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[14]  D. Bertsekas,et al.  A Vector Space Approach to Models and Optimization , 1983 .

[15]  Tomás Lozano-Pérez,et al.  Task-level planning of pick-and-place robot motions , 1989, Computer.

[16]  M. Vukobratovic,et al.  Trajectory Planning for Redundant Manipulators in the Presence of Obstacles , 1985 .

[17]  Tsuneo Yoshikawa,et al.  Dynamic manipulability of robot manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[18]  J. Hollerbach,et al.  Programming and control of kinematically redundant manipulators , 1984, The 23rd IEEE Conference on Decision and Control.

[19]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[20]  Pyung Chang A closed-form solution for inverse kinematics of robot manipulators with redundancy , 1987, IEEE Journal on Robotics and Automation.

[21]  John Baillieul,et al.  Resolution of Kinematic Redundancy using Optimization Techniques , 1988, 1988 American Control Conference.

[22]  C. Nelson Dorny,et al.  A Vector Space Approach to Models and Optimization , 1983 .

[23]  Alan A. Desrochers,et al.  Testbed for cooperative robotic manipulators , 1992 .

[24]  A.W. Divelbiss,et al.  A Perturbation Refinement Method for Nonholonomic Motion Planning , 1992, 1992 American Control Conference.

[25]  Daniel E. Whitney,et al.  Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .

[26]  Charles A. Klein,et al.  Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators , 1987 .

[27]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[28]  Fan-Tien Cheng,et al.  Efficient algorithm for resolving manipulator redundancy-the compact QP method , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[29]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[30]  Eduardo Sontag Gradient techniques for systems with no drift: a classical idea revisited , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[31]  Narendra Ahuja,et al.  Gross motion planning—a survey , 1992, CSUR.

[32]  S. Chiu,et al.  Control of redundant manipulators for task compatibility , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.