Vision Based 3D Tracking and Pose Estimation for Mixed Reality

Mixed Reality applications require accurate knowledge of the relative positions of the camera and the scene. When either of them moves, this means keeping track in real-time of all six degrees of freedom that define the camera position and orientation relative to the scene, or, equivalently, the 3D displacement of an object relative to the camera. Many technologies have been tried to achieve this goal. However, Computer Vision is the only one that has the potential to yield non-invasive, accurate and low-cost solutions to this problem, provided that one is willing to invest the effort required to develop sufficiently robust algorithms. In this chapter, we therefore discuss some of the most promising approaches, their strengths, and their weaknesses.

[1]  Vincent Lepetit,et al.  Stable real-time 3D tracking using online and offline information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Andrew W. Fitzgibbon,et al.  Reliable Fiducial Detection in Natural Scenes , 2004, ECCV.

[3]  Cordelia Schmid,et al.  IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2004, Washington, DC, USA, June 27 - July 2, 2004 , 2004, CVPR Workshops.

[4]  Jun Rekimoto,et al.  Matrix: a realtime object identification and registration method for augmented reality , 1998, Proceedings. 3rd Asia Pacific Computer Human Interaction (Cat. No.98EX110).

[5]  Duane C. Brown,et al.  Close-Range Camera Calibration , 1971 .

[6]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[7]  Hirokazu Kato,et al.  Marker tracking and HMD calibration for a video-based augmented reality conferencing system , 1999, Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR'99).

[8]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Alex Pentland,et al.  Motion regularization for model-based head tracking , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[10]  Mark A. Livingston,et al.  Superior augmented reality registration by integrating landmark tracking and magnetic tracking , 1996, SIGGRAPH.

[11]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Shree K. Nayar,et al.  A perspective on distortions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[13]  Roberto Cipolla,et al.  Real-Time Visual Tracking of Complex Structures , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  David W. Murray,et al.  Head pose estimation for wearable robot control , 2002, BMVC.

[15]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[16]  Eric Foxlin,et al.  Miniaturization, calibration & accuracy evaluation of a hybrid self-tracker , 2003, The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings..

[17]  Bruce A. Draper,et al.  Adaptive tracking and model registration across distinct aspects , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[18]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Luc Van Gool,et al.  Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions , 2000, BMVC.

[20]  Dimitris N. Metaxas,et al.  Optical Flow Constraints on Deformable Models with Applications to Face Tracking , 2000, International Journal of Computer Vision.

[21]  S. B. Kang,et al.  Recovering 3 D Shape and Motion from Image Streams using Non-Linear Least Squares , 1993 .

[22]  Pertti Roivainen,et al.  3-D Motion Estimation in Model-Based Facial Image Coding , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Harald Ganster,et al.  Hybrid Tracking for Outdoor Augmented Reality Applications , 2002, IEEE Computer Graphics and Applications.

[24]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[25]  Adam Baumberg,et al.  Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[26]  Vincent Lepetit,et al.  Combining edge and texture information for real-time accurate 3D camera tracking , 2004, Third IEEE and ACM International Symposium on Mixed and Augmented Reality.

[27]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[28]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[29]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[30]  Éric Marchand,et al.  A real-time tracker for markerless augmented reality , 2003, The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings..

[31]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  J. G. Fryer,et al.  In-flight aerial camera calibration from photography of linear features , 1989 .

[33]  Stephen J. Maybank,et al.  On plane-based camera calibration: A general algorithm, singularities, applications , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[34]  Michel Dhome,et al.  A simple and efficient template matching algorithm , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[35]  Adrian David Cheok,et al.  Online 6 DOF augmented reality registration from natural features , 2002, Proceedings. International Symposium on Mixed and Augmented Reality.

[36]  Hans P. Moravec Towards Automatic Visual Obstacle Avoidance , 1977, IJCAI.

[37]  Suya You,et al.  A robust hybrid tracking system for outdoor augmented reality , 2004, IEEE Virtual Reality 2004.

[38]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[39]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[40]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[41]  Andrew Zisserman,et al.  Robust Object Tracking , 2001 .

[42]  Marie-Odile Berger,et al.  A two-stage robust statistical method for temporal registration from features of various type , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[43]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[44]  Timothy F. Cootes,et al.  British Machine Vision Conference , 2009 .

[45]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[46]  Frédéric Jurie,et al.  Tracking objects with a recognition algorithm , 1998, Pattern Recognit. Lett..

[47]  David G. Lowe,et al.  Fitting Parameterized Three-Dimensional Models to Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Hans P. Morevec Towards automatic visual obstacle avoidance , 1977, IJCAI 1977.

[50]  David G. Lowe,et al.  Shape indexing using approximate nearest-neighbour search in high-dimensional spaces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[51]  Vincent Lepetit,et al.  Augmenting deformable objects in real-time , 2005, Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR'05).

[52]  Vincent Lepetit,et al.  Real-time nonrigid surface detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[53]  Yali Amit,et al.  Shape Quantization and Recognition with Randomized Trees , 1997, Neural Computation.

[54]  Walterio W. Mayol-Cuevas,et al.  International Symposium on Mixed and Augmented Reality , 2007 .

[55]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[56]  David G. Lowe,et al.  Scene modelling, recognition and tracking with invariant image features , 2004, Third IEEE and ACM International Symposium on Mixed and Augmented Reality.

[57]  Rachid Deriche,et al.  A computational approach for corner and vertex detection , 1993, International Journal of Computer Vision.

[58]  Luc Van Gool,et al.  Recognizing color patterns irrespective of viewpoint and illumination , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[59]  Andrew Zisserman,et al.  Multi-view Matching for Unordered Image Sets, or "How Do I Organize My Holiday Snaps?" , 2002, ECCV.

[60]  F. Sebastian Grassia,et al.  Practical Parameterization of Rotations Using the Exponential Map , 1998, J. Graphics, GPU, & Game Tools.

[61]  Patrick Bouthemy,et al.  A 2D-3D model-based approach to real-time visual tracking , 2001, Image Vis. Comput..

[62]  Michel Dhome,et al.  Hyperplane Approximation for Template Matching , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  Hans P. Moravec Robot Rover Visual Navigation , 1981 .

[64]  Vincent Lepetit,et al.  Randomized trees for real-time keypoint recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[65]  Janne Heikkilä,et al.  A four-step camera calibration procedure with implicit image correction , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[66]  Marco La Cascia,et al.  Fast, Reliable Head Tracking under Varying Illumination: An Approach Based on Registration of Texture-Mapped 3D Models , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Kostas Daniilidis,et al.  Omnidirectional video , 2003, The Visual Computer.

[68]  Vincent Lepetit,et al.  Keypoint recognition using randomized trees , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Ivan Poupyrev,et al.  Virtual object manipulation on a table-top AR environment , 2000, Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000).

[70]  Hiroshi Murase,et al.  Real-time 100 object recognition system , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[71]  Khoi Nguyen,et al.  Computer-vision-based registration techniques for augmented reality , 1996, Other Conferences.

[72]  David E. Breen,et al.  Real-time vision-based camera tracking for augmented reality applications , 1997, VRST '97.

[73]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[74]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.