Fracture Mechanics Analyses for Interface Crack Problems - A Review

Recent developments in fracture mechanics analyses of the interfacial crack problem are reviewed. The intent of the review is to renew the awareness of the oscillatory singularity at the crack tip of a bimaterial interface and the problems that occur when calculating mode mixity using numerical methods such as the finite element method in conjunction with the virtual crack closure technique. Established approaches to overcome the nonconvergence issue of the individual mode strain energy release rates are reviewed. In the recent literature many attempts to overcome the nonconvergence issue have been developed. Among the many approaches found only a few methods hold the promise of providing practical solutions. These are the resin interlayer method, the method that chooses the crack tip element size greater than the oscillation zone, the crack tip element method that is based on plate theory and the crack surface displacement extrapolation method. Each of the methods is validated on a very limited set of simple interface crack problems. However, their utility for a wide range of interfacial crack problems is yet to be established.

[1]  M. Bartsch,et al.  Simulation and experimental validation of mixed mode delamination in multidirectional CF/PEEK laminates under fatigue loading , 2011 .

[2]  Pedro P. Camanho,et al.  An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models , 2007 .

[3]  Vladislav Mantic,et al.  Crack onset and growth at the fibre–matrix interface under a remote biaxial transverse load. Application of a coupled stress and energy criterion , 2012 .

[4]  Bo Cerup Simonsen,et al.  Experimental and Numerical Study of Interface Crack Propagation in Foam-cored Sandwich Beams , 2007 .

[5]  Bent F. Sørensen,et al.  Measurement of Interface Fracture Toughness of Sandwich Structures under Mixed Mode Loadings , 2007 .

[6]  Richard Schapery,et al.  An Analytical Crack-Tip Element for Layered Elastic Structures , 1995 .

[7]  C. Sun,et al.  Cohesive zone modeling of interface fracture in elastic bi-materials , 2005 .

[8]  Bent F. Sørensen,et al.  Measurement of Interface Fracture Toughness of Sandwich Structures , 2005 .

[9]  De Xie,et al.  Computation of Energy Release Rates for Kinking Cracks based on Virtual Crack Closure Technique , 2004 .

[10]  I. Raju,et al.  Fracture mechanics concepts, stress fields, strain energy release rates, delamination initiation and growth criteria , 2008 .

[11]  Barry D. Davidson,et al.  Evaluation of energy release rate-based approaches for predicting delamination growth in laminated composites , 2000 .

[12]  I. Raju,et al.  Convergence of strain energy release rate components for Edge-Delaminated composite laminates , 1988 .

[13]  Ronald Krueger,et al.  Analysis of Composite Panel-Stiffener Debonding Using a Shell/3D Modeling Technique , 2006 .

[14]  B. Davidson,et al.  A single leg bending test for interfacial fracture toughness determination , 1996 .

[15]  B. Davidson,et al.  Three-dimensional analysis of center-delaminated unidirectional and multidirectional single-leg bending specimens , 1995 .

[16]  Leslie Banks-Sills,et al.  Comparison of methods for calculating stress intensity factors with quarter-point elements , 1986 .

[17]  Stress intensity factor analysis at an interfacial corner between anisotropic bimaterials under thermal stress , 2009 .

[18]  B. Davidson Analytical Determination of Mixed-Mode Energy Release Rates for Delamination Using a Crack Tip Element , 1996 .

[19]  J. Rice,et al.  Plane Problems of Cracks in Dissimilar Media , 1965 .

[20]  De Xie,et al.  Fracture criterion for kinking cracks in a tri-material adhesively bonded joint under mixed mode loading , 2005 .

[21]  L. Banks‐Sills,et al.  Influence of autofrettage on fracture toughness , 1989 .

[22]  L. Tong,et al.  Analytic formulas of energy release rates for delamination using a global–local method , 2012 .

[23]  Ronald Krüger,et al.  Three Dimensional Finite Element Analysis of Multidirectional Composite DCB , SLB and ENF Specimens , 1994 .

[24]  M. Toya,et al.  On mode I and mode II energy release rates of an interface crack , 1992 .

[25]  A. S. Argon,et al.  Fracture of Composites , 1972 .

[26]  P. Charalambides,et al.  NEAR-TIP MODE-I ELASTIC FIELDS IN BIMATERIAL LAYERED SYSTEMS , 1997 .

[27]  B. F. Sørensen,et al.  Interface crack in sandwich specimen , 2007 .

[28]  C. Persson,et al.  A numerical method for calculating stress intensity factors for interface cracks in bimaterials , 2001 .

[29]  李幼升,et al.  Ph , 1989 .

[30]  H. Beom,et al.  Dependence of stress intensity factors on elastic constants for cracks in an orthotropic bimaterial with a thin film , 2012 .

[31]  R. Moslemian,et al.  Accelerated Fatigue Crack Growth Simulation in a Bimaterial Interface , 2017 .

[32]  C. Berggreen,et al.  Non-uniform Compressive Strength of Debonded Sandwich Panels – II. Fracture Mechanics Investigation , 2005 .

[33]  B. Davidson,et al.  Accuracy assessment of the singular-field-based mode-mix decomposition procedure for the prediction of delamination , 1997 .

[34]  Jack Beuth,et al.  Separation of crack extension modes in orthotropic delamination models , 1996 .

[35]  Leslie Banks-Sills,et al.  A new cohesive zone model for mixed mode interface fracture in bimaterials , 2008 .

[36]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[37]  B. Michel,et al.  Interaction integral and mode separation for BEoL-cracking and -delamination investigations under 3D-IC integration aspects , 2011, 2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems.

[38]  De Xie,et al.  Analysis of mixed-mode dynamic crack propagation by interface element based on virtual crack closure technique , 2007 .

[39]  Aniello Riccio,et al.  A Global/Local Finite Element Approach for Predicting Interlaminar and Intralaminar Damage Evolution in Composite Stiffened Panels Under Compressive Load , 2011 .

[40]  S. Goutianos,et al.  Path dependence of truss-like mixed mode cohesive laws , 2012 .

[41]  Department of Transportation Federal Aviation Administration 14 Cfr Part 91 Automatic Dependent Surveillance— Broadcast (ads–b) out Performance Requirements to Support Air Traffic Control (atc) Service; Final Rule Department of Transportation Federal Aviation Administration 14 Cfr Part 91 Automatic , 2022 .

[42]  L. Banks‐Sills,et al.  A through interface crack between a transversely isotropic pair of materials (+30°/−60°, −30°/+60°) , 2010 .

[43]  B. Dopker,et al.  Interlaminar Fatigue Elements for Crack Growth Based On Virtual Crack Closure Technique , 2007 .

[44]  Satya N. Atluri,et al.  Finite element calculation of stress intensity factors for interfacial crack using virtual crack closure integral , 1995 .

[45]  Barry D. Davidson,et al.  Energy Release Rate Prediction in Stiffened-skin Structure Using a Three-dimensional Crack Tip Element Analysis , 2005 .

[46]  D. Ashkenazi,et al.  Interface fracture properties of a bimaterial ceramic composite , 2000 .

[47]  A. Waas,et al.  Experimental determination of validated, critical interfacial modes I and II energy release rates in a composite sandwich panel☆ , 2012 .

[48]  Viggo Tvergaard,et al.  Predictions of mixed mode interface crack growth using a cohesive zone model for ductile fracture , 2004 .

[49]  Z. Suo,et al.  Mixed mode cracking in layered materials , 1991 .

[50]  Lorenzo Iannucci,et al.  A coupled mixed-mode delamination model for laminated composites , 2011 .

[51]  C. Sun,et al.  On strain energy release rates for interfacial cracks in bi-material media , 1987 .

[52]  Ronald Krueger,et al.  The Virtual Crack Closure Technique : History , Approach and Applications , 2002 .

[53]  Pedro P. Camanho,et al.  Fracture analysis of composite co-cured structural joints using decohesion elements , 2008 .

[54]  L. Carlsson,et al.  Interfacial fracture of sandwich beams , 1993 .

[55]  Energy release rate and phase angle of delamination in sandwich beams and symmetric adhesively bonded joints , 2009 .

[56]  D. Ashkenazi,et al.  A note on fracture criteria for interface fracture , 2000 .

[57]  L. Banks‐Sills,et al.  Fracture toughness of the + 45° / – 45° interface of a laminate composite , 2006 .

[58]  Aniello Riccio,et al.  Formulation and assessment of an enhanced finite element procedure for the analysis of delamination growth phenomena in composite structures , 2011 .

[59]  L. Hua,et al.  Investigation of near-tip displacement fields of a crack normal to and terminating at a bimaterial interface under mixed-mode loading , 2002 .

[60]  D. Ashkenazi,et al.  A methodology for measuring interface fracture properties of composite materials , 1999 .

[61]  Chuan-yao Chen,et al.  A modified zigzag approach to approximate moving crack front with arbitrary shape , 2011 .

[62]  B. Dopker,et al.  FRACTURE INTERFACE ELEMENTS FOR STATIC AND FATIGUE ANALYSIS , 2007 .

[63]  B. Davidson,et al.  A Three-Dimensional Crack Tip Element for Energy Release Rate Determination in Layered Elastic Structures , 2001 .

[64]  Ferrié,et al.  Virtual Crack Closure Technique on Stepped Crack Front (VCCT-S) , 2008 .

[65]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[66]  Z. Suo,et al.  Interface crack between two elastic layers , 1990 .

[67]  P. Valvo A revised virtual crack closure technique for physically consistent fracture mode partitioning , 2011, International Journal of Fracture.

[68]  S. Smith,et al.  Modified Mode-I Cracked Sandwich Beam (CSB) Fracture Test , 2001 .

[69]  B. Dattaguru,et al.  Finite element estimates of strain energy release rate components at the tip of an interface crack under mode I loading , 1994 .

[70]  D. Kelly,et al.  Fracture mechanics based predictions of initiation and growth of multi-level delaminations in a composite specimen , 2011 .

[71]  Koh Yamanaga,et al.  Stress intensity factor analyses of interface cracks between dissimilar anisotropic materials using the finite element method , 2006 .

[72]  P. Camanho,et al.  Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials , 2002 .

[73]  M. Williams The stresses around a fault or crack in dissimilar media , 1959 .

[74]  Barry D. Davidson,et al.  An Accurate Mixed-mode Delamination Failure Criterion for Laminated Fibrous Composites Requiring Limited Experimental Input , 2007 .

[75]  F. Erdogan,et al.  Stress Distribution in Bonded Dissimilar Materials With Cracks , 1965 .

[76]  N. Miyazaki,et al.  Stress intensity factor analysis of a three-dimensional interfacial corner between anisotropic bimaterials under thermal stress , 2010 .

[77]  B. Davidson,et al.  Determination of energy release rate and mode mix in three-dimensional layered structures using plate theory , 2000 .

[78]  De Xie,et al.  Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: Formulation and validation , 2006 .

[79]  Su-Su Wang,et al.  An analysis of interface cracks between dissimilar isotropic materials using conservation integrals in elasticity , 1984 .

[80]  R. McMeeking,et al.  A method for calculating stress intensities in bimaterial fracture , 1989 .

[81]  Anette M. Karlsson,et al.  Obtaining mode mixity for a bimaterial interface crack using the virtual crack closure technique , 2006 .

[82]  John A. Nairn,et al.  Generalized crack closure analysis for elements with arbitrarily-placed side nodes and consistent nodal forces , 2011 .

[83]  L. Banks‐Sills,et al.  Development of a methodology for determination of interface fracture toughness of laminate composites—the 0°/90° pair , 2005 .

[84]  Michael R Wisnom,et al.  PROCEEDINGS OF THE AMERICAN SOCIETY FOR COMPOSITES , 2013 .

[85]  Z. Ou,et al.  On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials , 2003 .

[86]  Domenico Bruno,et al.  Mixed mode delamination in plates: a refined approach , 2001 .

[87]  L. Banks‐Sills,et al.  A through interface crack between a ±45° transversely isotropic pair of materials , 2005 .

[88]  Srinivasan Sridharan,et al.  Delamination Behaviour of Composites , 2008 .

[89]  B. Davidson,et al.  Three Dimensional Analysis and Resulting Design Recommendations for Unidirectional and Multidirectional End-Notched Flexure Tests , 1995 .

[90]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[91]  B. Davidson,et al.  Accuracy assessment of a three-dimensional, crack tip element based approach for predicting delamination growth in stiffened-skin geometries , 2005 .

[92]  A. Szekrényes Interlaminar stresses and energy release rates in delaminated orthotropic composite plates , 2012 .

[93]  Christian Berggreen,et al.  Face/core debond fatigue crack growth characterization using the sandwich mixed mode bending specimen , 2012 .

[94]  James R. Rice,et al.  Elastic Fracture Mechanics Concepts for Interfacial Cracks , 1988 .

[95]  C. Sun,et al.  The use of finite extension strain energy release rates in fracture of interfacial cracks , 1997 .

[96]  Jinyang Zheng,et al.  Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique , 2011 .

[97]  Leslie Banks-Sills,et al.  Update: Application of the Finite Element Method to Linear Elastic Fracture Mechanics , 1991 .