Performance of Reed-Solomon codes using the Guruswami-Sudan algorithm with improved interpolation efficiency

List decoding is a novel method for decoding Reed-Solomon (RS) codes that generates a list of candidate transmitted messages instead of one unique message as with conventional algebraic decoding, making it possible to correct more errors. The Guruswami-Sudan (GS) algorithm is the most efficient list decoding algorithm for RS codes. Until recently only a few papers in the literature suggested practical methods to implement the key steps (interpolation and factorisation) of the GS algorithm that make the list decoding of RS codes feasible. However, the algorithm's high decoding complexity is unsolved and a novel complexity-reduced modification to improve its efficiency is presented. A detailed explanation of the GS algorithm with the complexity-reduced modification is given with simulation results of RS codes for different list decoding parameters over the AWGN and Rayleigh fading channels. A complexity analysis is presented comparing the GS algorithm with our modified GS algorithm, showing the modification can reduce complexity significantly in low error weight situations. Simulation results using the modified GS algorithm show larger coding gains for RS codes with lower code rates, with more significant gains being achieved over the Rayleigh fading channels.

[1]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[2]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[3]  Alexander Vardy,et al.  A complexity reducing transformation in algebraic list decoding of Reed-Solomon codes , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[4]  Helmut Hasse Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik. , 1936 .

[5]  Peter Elias,et al.  List decoding for noisy channels , 1957 .

[6]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[7]  Venkatesan Guruswami,et al.  List decoding of error correcting codes , 2001 .

[8]  David M. Mandelbaum Decoding beyond the Designed Distance for Certain Algebraic Codes , 1977, Inf. Control..

[9]  R. McEliece The Guruswami-Sudan Decoding Algorithm for Reed-Solomon Codes , 2003 .

[10]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[11]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[12]  Jehoshua Bruck,et al.  On the Average Complexity of Reed-Solomon Algebraic List Decoders , 2005 .

[13]  Oliver Pretzel,et al.  Codes and Algebraic Curves , 1998 .

[14]  J. Allen Research Laboratory of Electronics , 1983 .

[15]  R. Roth,et al.  Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[16]  G. David Forney,et al.  Generalized minimum distance decoding , 1966, IEEE Trans. Inf. Theory.

[17]  T. Moon Error Correction Coding: Mathematical Methods and Algorithms , 2005 .

[18]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[19]  Masao Kasahara,et al.  A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..

[20]  Vladimir M. Blinovsky,et al.  List decoding , 1992, Discret. Math..

[21]  R. Kotter Fast generalized minimum-distance decoding of algebraic-geometry and Reed-Solomon codes , 1996 .

[22]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometric codes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).