Practical evaluation of encrypted traffic classification based on a combined method of entropy estimation and neural networks

[1]  Antonio Pescapè,et al.  Multi-classification approaches for classifying mobile app traffic , 2018, J. Netw. Comput. Appl..

[2]  Giuseppe Aceto,et al.  Mobile Encrypted Traffic Classification Using Deep Learning: Experimental Evaluation, Lessons Learned, and Challenges , 2019, IEEE Transactions on Network and Service Management.

[3]  Charles V. Wright,et al.  Language Identification of Encrypted VoIP Traffic: Alejandra y Roberto or Alice and Bob? , 2007, USENIX Security Symposium.

[4]  Liam Paninski,et al.  Estimation of Entropy and Mutual Information , 2003, Neural Computation.

[5]  Jun Zhang,et al.  Network Traffic Classification Using Correlation Information , 2013, IEEE Transactions on Parallel and Distributed Systems.

[6]  Charles V. Wright,et al.  Spot Me if You Can: Uncovering Spoken Phrases in Encrypted VoIP Conversations , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[7]  Grenville J. Armitage,et al.  A survey of techniques for internet traffic classification using machine learning , 2008, IEEE Communications Surveys & Tutorials.

[8]  Lili Qiu,et al.  Statistical identification of encrypted Web browsing traffic , 2002, Proceedings 2002 IEEE Symposium on Security and Privacy.

[9]  Mauro Conti,et al.  AppScanner: Automatic Fingerprinting of Smartphone Apps from Encrypted Network Traffic , 2016, 2016 IEEE European Symposium on Security and Privacy (EuroS&P).

[10]  Ali A. Ghorbani,et al.  Characterization of Encrypted and VPN Traffic using Time-related Features , 2016, ICISSP.

[11]  Antonio Pescapè,et al.  Mobile Encrypted Traffic Classification Using Deep Learning , 2018, 2018 Network Traffic Measurement and Analysis Conference (TMA).

[12]  A. Nur Zincir-Heywood,et al.  A Comparison of three machine learning techniques for encrypted network traffic analysis , 2011, 2011 IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA).

[13]  Pavel Celeda,et al.  A survey of methods for encrypted traffic classification and analysis , 2015, Int. J. Netw. Manag..

[14]  Brian Neil Levine,et al.  Inferring the source of encrypted HTTP connections , 2006, CCS '06.

[15]  Sylvia Ratnasamy,et al.  BlindBox: Deep Packet Inspection over Encrypted Traffic , 2015, SIGCOMM.

[16]  Haye Hinrichsen,et al.  Entropy estimates of small data sets , 2008, 0804.4561.

[17]  M. Amaç Güvensan,et al.  Application identification via network traffic classification , 2017, 2017 International Conference on Computing, Networking and Communications (ICNC).

[18]  Subharthi Paul,et al.  Deciphering malware’s use of TLS (without decryption) , 2016, Journal of Computer Virology and Hacking Techniques.

[19]  Dario Rossi,et al.  KISS: Stochastic Packet Inspection Classifier for UDP Traffic , 2010, IEEE/ACM Transactions on Networking.

[20]  Peter Dorfinger,et al.  Entropy Estimation for Real-Time Encrypted Traffic Identification (Short Paper) , 2011, TMA.

[21]  Giuseppe Aceto,et al.  Anonymity Services Tor, I2P, JonDonym: Classifying in the Dark (Web) , 2020, IEEE Transactions on Dependable and Secure Computing.