On Unbiased Score Estimation for Partially Observed Diffusions

We consider the problem of statistical inference for a class of partially-observed diffusion processes, with discretely-observed data and finite-dimensional parameters. We construct unbiased estimators of the score function, i.e. the gradient of the log-likelihood function with respect to parameters, with no time-discretization bias. These estimators can be straightforwardly employed within stochastic gradient methods to perform maximum likelihood estimation or Bayesian inference. As our proposed methodology only requires access to a time-discretization scheme such as the Euler–Maruyama method, it is applicable to a wide class of diffusion processes and observation models. Our approach is based on a representation of the score as a smoothing expectation using Girsanov theorem, and a novel adaptation of the randomization schemes developed in Mcleish [2011], Rhee and Glynn [2015], Jacob et al. [2020a]. This allows one to remove the time-discretization bias and burn-in bias when computing smoothing expectations using the conditional particle filter of Andrieu et al. [2010]. Central to our approach is the development of new couplings of multiple conditional particle filters. We prove under assumptions that our estimators are unbiased and have finite variance. The methodology is illustrated on several challenging applications from population ecology and neuroscience.

[1]  H. Thorisson Coupling, stationarity, and regeneration , 2000 .

[2]  Peter W. Glynn,et al.  Unbiased Estimation with Square Root Convergence for SDE Models , 2015, Oper. Res..

[3]  Matti Vihola,et al.  Coupled conditional backward sampling particle filter , 2018, The Annals of Statistics.

[4]  Alexandros Beskos,et al.  Score-Based Parameter Estimation for a Class of Continuous-Time State Space Models , 2021, SIAM J. Sci. Comput..

[5]  R. Douc,et al.  Uniform Ergodicity of the Particle Gibbs Sampler , 2014, 1401.0683.

[6]  G. Roberts,et al.  Monte Carlo Maximum Likelihood Estimation for Discretely Observed Diffusion Processes , 2009, 0903.0290.

[7]  David Williams Diffusions, Markov Processes and Martingales: Volume 2, Ito Calculus , 2000 .

[8]  G. Roberts,et al.  Retrospective exact simulation of diffusion sample paths with applications , 2006 .

[9]  Arnaud Doucet,et al.  Asymptotic bias of stochastic gradient search , 2011, IEEE Conference on Decision and Control and European Control Conference.

[10]  Sumeetpal S. Singh,et al.  On particle Gibbs sampling , 2013, 1304.1887.

[11]  Ali M. Mosammam The Oxford handbook of nonlinear filtering , 2012 .

[12]  Brian Dennis,et al.  Analysis of Steady‐State Populations With the Gamma Abundance Model: Application to Tribolium , 1988 .

[13]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[14]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[15]  Perry de Valpine,et al.  Fitting complex population models by combining particle filters with Markov chain Monte Carlo. , 2012, Ecology.

[16]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[17]  G. Roberts,et al.  Exact simulation of diffusions , 2005, math/0602523.

[18]  P. Fearnhead,et al.  Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .

[19]  P. Fearnhead,et al.  A sequential smoothing algorithm with linear computational cost. , 2010 .

[20]  J. Blanchet,et al.  Exact simulation for multivariate Itô diffusions , 2017, Advances in Applied Probability.

[21]  Gareth O. Roberts,et al.  On the exact and ε-strong simulation of (jump) diffusions , 2013, 1302.6964.

[22]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[23]  Fredrik Lindsten,et al.  Smoothing With Couplings of Conditional Particle Filters , 2017, Journal of the American Statistical Association.

[24]  P. Fearnhead,et al.  Particle filters for partially observed diffusions , 2007, 0710.4245.

[25]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[26]  Yee Whye Teh,et al.  Consistency and Fluctuations For Stochastic Gradient Langevin Dynamics , 2014, J. Mach. Learn. Res..

[27]  T. Hafting,et al.  Hippocampus-independent phase precession in entorhinal grid cells , 2008, Nature.

[28]  Paul Fearnhead,et al.  Continious-time Importance Sampling: Monte Carlo Methods which Avoid Time-discretisation Error , 2017, 1712.06201.

[29]  Hilbert J. Kappen,et al.  Adaptive Importance Sampling for Control and Inference , 2015, ArXiv.

[30]  Yan Zhou,et al.  Multilevel Particle Filters , 2015, SIAM J. Numer. Anal..

[31]  Fredrik Lindsten,et al.  Particle gibbs with ancestor sampling , 2014, J. Mach. Learn. Res..

[32]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[33]  Harry van Zanten,et al.  Guided proposals for simulating multi-dimensional diffusion bridges , 2013, 1311.3606.

[34]  H. Sørensen Parametric Inference for Diffusion Processes Observed at Discrete Points in Time: a Survey , 2004 .

[35]  A. Jasra,et al.  Central limit theorems for coupled particle filters , 2018, Advances in Applied Probability.

[36]  A. Doucet,et al.  Smoothing algorithms for state–space models , 2010 .

[37]  P. Jacob,et al.  Unbiased Markov chain Monte Carlo methods with couplings , 2020, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[38]  Ward Whitt,et al.  The Asymptotic Efficiency of Simulation Estimators , 1992, Oper. Res..

[39]  Christophe Andrieu,et al.  Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers , 2013, 1312.6432.

[40]  Aurélien Garivier,et al.  Sequential Monte Carlo smoothing for general state space hidden Markov models , 2011, 1202.2945.

[41]  Peter W. Glynn,et al.  Exact estimation for Markov chain equilibrium expectations , 2014, Journal of Applied Probability.

[42]  Don McLeish,et al.  A general method for debiasing a Monte Carlo estimator , 2010, Monte Carlo Methods Appl..

[43]  M. Giles,et al.  Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation , 2012, 1202.6283.

[44]  Pierre-Louis Lions,et al.  Applications of Malliavin calculus to Monte Carlo methods in finance , 1999, Finance Stochastics.

[45]  Kody J. H. Law,et al.  On Unbiased Estimation for Discretized Models , 2021, SIAM/ASA J. Uncertain. Quantification.

[46]  Raul Tempone,et al.  A Wasserstein coupled particle filter for multilevel estimation , 2020, Stochastic Analysis and Applications.

[47]  G. Caughley,et al.  Kangaroos: Their Ecology and Management in the Sheep Rangelands of Australia. , 1988 .

[48]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[49]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[50]  Matti Vihola,et al.  Unbiased Estimators and Multilevel Monte Carlo , 2015, Oper. Res..