The approximability of NP-hard problems

Many problems in combinatorial optimization are NP-hard (see [60]). This has forced researchers to explore techniques for dealing with NP-completeness. Some have considered algorithms that solve “typical” or “average” instances instead of worst-case instances [86, 100]. In practice, however, identifying “typical” instances is not easy. Other researchers have tried to design approximation algorithms. An algorithm achieves an approximation ratio α for a maximization problem if, for every instance, it produces a solution of value at least OPT/α, where OPT is the value of the optimal solution. (For a minimization problem, achieving a ratio α involves finding a solution of cost at most αOPT .) Note that the approximation ratio is ≥ 1 by definition. After twenty-five years of research, approximation algorithms is a major research area with deep techniques (see [75] for a detailed survey). Nevertheless, researchers have failed to design good approximation algorithms for a wide variety of NPhard optimization problems. Recent developments in complexity theory —specifically, in the area of probabilistically checkable proofs or PCPs— suggest a reason for this failure: for many NP-hard problems, including MAX-CLIQUE, CHROMATIC NUMBER, MAX-3SAT, and SET-COVER, achieving certain reasonable approximation ratios is no easier than computing optimal solutions. In other words, approximation is NP-hard. These negative

[1]  Mihalis Yannakakis,et al.  The Effect of a Connectivity Requirement on the Complexity of Maximum Subgraph Problems , 1979, JACM.

[2]  Silvio Micali,et al.  The Knowledge Complexity of Interactive Proof Systems , 1989, SIAM J. Comput..

[3]  Carsten Lund,et al.  Non-deterministic exponential time has two-prover interactive protocols , 2005, computational complexity.

[4]  Giorgio Ausiello,et al.  On the Structure of Combinatorial Problems and Structure Preserving Reductions , 1977, ICALP.

[5]  David R. Karger,et al.  On Approximating the Longest Path in a Graph (Preliminary Version) , 1993, WADS.

[6]  Madhu Sudan,et al.  Improved Low-Degree Testing and its Applications , 1997, STOC '97.

[7]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[8]  Uriel Feige A threshold of ln n for approximating set cover (preliminary version) , 1996, STOC '96.

[9]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1994, JACM.

[10]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: practical and theoretical results , 1987 .

[11]  Uriel Feige,et al.  Two prover protocols: low error at affordable rates , 1994, STOC '94.

[12]  Alan M. Frieze,et al.  The regularity lemma and approximation schemes for dense problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[13]  Uriel Feige,et al.  Approximating the Bandwidth via Volume Respecting Embeddings , 2000, J. Comput. Syst. Sci..

[14]  Joan Feigenbaum,et al.  Hiding Instances in Multioracle Queries , 1990, STACS.

[15]  J. Håstad Clique is hard to approximate within n 1-C , 1996 .

[16]  Desh Ranjan,et al.  Quantifiers and approximation , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[17]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[18]  David B. Shmoys,et al.  A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..

[19]  Mihir Bellare,et al.  Free bits, PCPs and non-approximability-towards tight results , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[20]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.

[21]  David P. Williamson,et al.  A complete classification of the approximability of maximization problems derived from Boolean constraint satisfaction , 1997, STOC '97.

[22]  GoldwasserShafi,et al.  Interactive proofs and the hardness of approximating cliques , 1996 .

[23]  Jacques Stern,et al.  The hardness of approximate optima in lattices, codes, and systems of linear equations , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[24]  Magnús M. Halldórsson,et al.  A Still Better Performance Guarantee for Approximate Graph Coloring , 1993, Information Processing Letters.

[25]  Mihir Bellare,et al.  Interactive proofs and approximation: reductions from two provers in one round , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[26]  Jeffrey D. Ullman,et al.  Worst-case analysis of memory allocation algorithms , 1972, STOC.

[27]  Avi Wigderson,et al.  Improving the performance guarantee for approximate graph coloring , 1983, JACM.

[28]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[29]  László Lovász,et al.  Interactive proofs and the hardness of approximating cliques , 1996, JACM.

[30]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1998, JACM.

[31]  Joan Feigenbaum,et al.  Random Debaters and the Hardness of Approximating Stochastic Functions , 1997, SIAM J. Comput..

[32]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[33]  Sanjeev Arora,et al.  Nearly linear time approximation schemes for Euclidean TSP and other geometric problems , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[34]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[35]  Mihir Bellare,et al.  Improved non-approximability results , 1994, STOC '94.

[36]  Jacques Stern,et al.  The Hardness of Approximate Optima in Lattices, Codes, and Systems of Linear Equations , 1997, J. Comput. Syst. Sci..

[37]  Uriel Feige,et al.  Two-Prover Protocols - Low Error at Affordable Rates , 2000, SIAM J. Comput..

[38]  Luca Trevisan,et al.  Constraint satisfaction: the approximability of minimization problems , 1997, Proceedings of Computational Complexity. Twelfth Annual IEEE Conference.

[39]  Carsten Lund,et al.  Hardness of approximations , 1996 .

[40]  Piotr Berman,et al.  On the Complexity of Approximating the Independent Set Problem , 1989, Inf. Comput..

[41]  Mihalis Yannakakis,et al.  The Traveling Salesman Problem with Distances One and Two , 1993, Math. Oper. Res..

[42]  Lance Fortnow,et al.  On the Power of Multi-Prover Interactive Protocols , 1994, Theor. Comput. Sci..

[43]  Miklós Ajtai,et al.  Generating Hard Instances of Lattice Problems , 1996, Electron. Colloquium Comput. Complex..

[44]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[45]  Richard M. Karp,et al.  An efficient approximation scheme for the one-dimensional bin-packing problem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[46]  David S. Johnson,et al.  The Complexity of Near-Optimal Graph Coloring , 1976, J. ACM.

[47]  Joan Feigenbaum,et al.  Probabilistically checkable debate systems and approximation algorithms for PSPACE-hard functions , 1993, STOC.

[48]  H IbarraOscar,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975 .

[49]  Mihir Bellare,et al.  The complexity of approximating a nonlinear program , 1995, Math. Program..

[50]  Cynthia Dwork,et al.  A public-key cryptosystem with worst-case/average-case equivalence , 1997, STOC '97.

[51]  Mihalis Yannakakis,et al.  Edge-Deletion Problems , 1981, SIAM J. Comput..

[52]  Phokion G. Kolaitis Hardness Of Approximations , 1996 .

[53]  Carsten Lund,et al.  Efficient probabilistically checkable proofs and applications to approximations , 1993, STOC.

[54]  Giorgio Ausiello,et al.  Structure Preserving Reductions among Convex Optimization Problems , 1980, J. Comput. Syst. Sci..

[55]  Alan M. Frieze,et al.  A new rounding procedure for the assignment problem with applications to dense graph arrangement problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[56]  Uri Zwick,et al.  A 7/8-approximation algorithm for MAX 3SAT? , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[57]  Uriel Feige,et al.  Zero Knowledge and the Chromatic Number , 1998, J. Comput. Syst. Sci..

[58]  Magnús M. Hallórsson A still better performance guarantee for approximate graph coloring , 1993 .

[59]  David B. Shmoys,et al.  Cut problems and their application to divide-and-conquer , 1996 .

[60]  Johan Håstad,et al.  Some optimal inapproximability results , 1997, STOC '97.

[61]  David P. Williamson,et al.  Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees, with Applications to Matching and Set Cover , 1993, ICALP.

[62]  Marshall W. Bern,et al.  The Steiner Problem with Edge Lengths 1 and 2 , 1989, Inf. Process. Lett..

[63]  Carsten Lund,et al.  Algebraic methods for interactive proof systems , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[64]  Carsten Lund Power of interaction , 1992, ACM Distinguished dissertations.

[65]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean TSP and other geometric problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[66]  Manuel Blum,et al.  Designing programs that check their work , 1989, STOC '89.

[67]  Sartaj Sahni,et al.  Approximate Algorithms for the 0/1 Knapsack Problem , 1975, JACM.

[68]  Oded Goldreich,et al.  Probabilistic Proof Systems , 1994 .

[69]  David S. Johnson,et al.  `` Strong '' NP-Completeness Results: Motivation, Examples, and Implications , 1978, JACM.

[70]  Wenceslas Fernandez de la Vega,et al.  MAX-CUT has a randomized approximation scheme in dense graphs , 1996, Random Struct. Algorithms.

[71]  Leonid A. Levin,et al.  Average Case Complete Problems , 1986, SIAM J. Comput..

[72]  Ronitt Rubinfeld,et al.  Self-testing polynomial functions efficiently and over rational domains , 1992, SODA '92.

[73]  R. Rubinfeld A mathematical theory of self-checking, self-testing and self-correcting programs , 1991 .

[74]  Miklós Ajtai,et al.  Generating hard instances of lattice problems (extended abstract) , 1996, STOC '96.

[75]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[76]  Oded Goldreich,et al.  Probabilistic Proof Systems A Survey , 1995 .

[77]  G. S. Lueker,et al.  Bin packing can be solved within 1 + ε in linear time , 1981 .

[78]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[79]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1998, JACM.

[80]  Ran Raz,et al.  A parallel repetition theorem , 1995, STOC '95.

[81]  Johan Håstad,et al.  Clique is hard to approximate within n/sup 1-/spl epsiv// , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[82]  László Babai,et al.  Trading group theory for randomness , 1985, STOC '85.

[83]  László Babai,et al.  Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes , 1988, J. Comput. Syst. Sci..

[84]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[85]  Sanjeev Arora Probabilistic checking of proofs and hardness of approximation problems , 1995 .

[86]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[87]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[88]  Carsten Lund,et al.  Proof verification and the intractability of approximation problems , 1992, FOCS 1992.

[89]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[90]  Ravi B. Boppana,et al.  Approximating maximum independent sets by excluding subgraphs , 1992, BIT Comput. Sci. Sect..

[91]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[92]  Luca Trevisan,et al.  Structure in Approximation Classes (Extended Abstract) , 1995, International Computing and Combinatorics Conference.

[93]  Uriel Feige,et al.  Approximating the bandwidth via volume respecting embeddings (extended abstract) , 1998, STOC '98.

[94]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[95]  Joseph S. B. Mitchell,et al.  Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..

[96]  David P. Williamson,et al.  .879-approximation algorithms for MAX CUT and MAX 2SAT , 1994, STOC '94.

[97]  L. Fortnow,et al.  On the power of multi-power interactive protocols , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[98]  Marek Karpinski,et al.  Polynomial time approximation schemes for dense instances of NP-hard problems , 1995, STOC '95.

[99]  Pierluigi Crescenzi,et al.  A compendium of NP optimization problems , 1994, WWW Spring 1994.

[100]  Phokion G. Kolaitis,et al.  Approximation properties of NP minimization classes , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[101]  Avi Wigderson,et al.  Multi-prover interactive proofs: how to remove intractability assumptions , 2019, STOC '88.

[102]  David Zuckerman,et al.  NP-complete problems have a version that's hard to approximate , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[103]  Joan Feigenbaum,et al.  Random debaters and the hardness of approximating stochastic functions , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[104]  Nadia Creignou,et al.  A Dichotomy Theorem for Maximum Generalized Satisfiability Problems , 1995, J. Comput. Syst. Sci..

[105]  Madhu Sudan,et al.  Efficient Checking of Polynomials and Proofs and the Hardness of Appoximation Problems , 1995, Lecture Notes in Computer Science.

[106]  Leonid A. Levin,et al.  Checking computations in polylogarithmic time , 1991, STOC '91.

[107]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[108]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[109]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[110]  Mihalis Yannakakis,et al.  Approximate max-flow min-(multi)cut theorems and their applications , 1993, SIAM J. Comput..

[111]  Rajeev Motwani,et al.  On syntactic versus computational views of approximability , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[112]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[113]  Carsten Lund,et al.  Nondeterministic exponential time has two-prover interactive protocols , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[114]  László Lovász,et al.  On the ratio of optimal integral and fractional covers , 1975, Discret. Math..

[115]  Santosh S. Vempala,et al.  Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems , 1998, STOC '98.

[116]  Leslie A. Hall,et al.  Approximation algorithms for scheduling , 1996 .

[117]  Hans Ulrich Simon,et al.  On Approximate Solutions for Combinatorial Optimization Problems , 1990, SIAM J. Discret. Math..

[118]  Giorgio Ausiello,et al.  Toward a Unified Approach for the Classification of NP-Complete Optimization Problems , 1979, Theor. Comput. Sci..

[119]  Frank Thomson Leighton,et al.  An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[120]  GoldreichOded,et al.  Property testing and its connection to learning and approximation , 1998 .

[121]  Adi Shamir,et al.  IP = PSPACE , 1992, JACM.

[122]  Martin Fürer,et al.  Improved Hardness Results for Approximating the Chromatic Number , 1995, FOCS.

[123]  Alessandro Panconesi,et al.  Completeness in Approximation Classes , 1989, Inf. Comput..

[124]  László Lovász,et al.  Two-prover one-round proof systems: their power and their problems (extended abstract) , 1992, STOC '92.

[125]  Adi Shamir,et al.  Fully parallelized multi prover protocols for NEXP-time , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[126]  Richard J. Lipton,et al.  New Directions In Testing , 1989, Distributed Computing And Cryptography.

[127]  László Babai,et al.  Transparent Proofs and Limits to Approximation , 1994 .

[128]  Carsten Lund,et al.  The Approximation of Maximum Subgraph Problems , 1993, ICALP.

[129]  Nathan Linial,et al.  On the Hardness of Approximating the Chromatic Number , 2000, Comb..

[130]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[131]  Mihalis Yannakakis,et al.  On the approximation of maximum satisfiability , 1992, SODA '92.

[132]  Martin Fiirer Improved Hardness Results for Approximating the Chromatic Number , 1995 .

[133]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[134]  Mihir Bellare,et al.  Linearity testing in characteristic two , 1996, IEEE Trans. Inf. Theory.

[135]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[136]  Manuel Blum,et al.  Self-Testing/Correcting with Applications to Numerical Problems , 1993, J. Comput. Syst. Sci..

[137]  Oded Goldreich A taxonomy of proof systems , 1998 .