Automatic identification of fossils and abiotic grains during carbonate microfacies analysis using deep convolutional neural networks

[1]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[2]  R. Pankhurst AUTOMATED IDENTIFICATION IN SYSTEMATICS , 1974 .

[3]  J. L. Wilson,et al.  Carbonate Facies in Geologic History , 1975 .

[4]  Dario Sartorio,et al.  Southern Tethys biofacies , 1988 .

[5]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[6]  Jeffrey L. Baldwin,et al.  Application Of A Neural Network To The Problem Of Mineral Identification From Well Logs , 1990 .

[7]  Tesfaye Lakew,et al.  Microfacies and cyclic sedimentation of the Upper Triassic (Rhaetian) Calcare di zu (Southern Alps) , 1990 .

[8]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[9]  H. C. Chen,et al.  Identification of lithofacies using Kohonen self-organizing maps , 2002 .

[10]  Peter A. Scholle,et al.  A color guide to the petrography of carbonate rocks , 2003 .

[11]  Gustavo E. A. P. A. Batista,et al.  A study of the behavior of several methods for balancing machine learning training data , 2004, SKDD.

[12]  Erik Flügel,et al.  Microfacies of Carbonate Rocks: Analysis, Interpretation and Application , 2004 .

[13]  Luc Beaufort,et al.  Automatic recognition of coccoliths by dynamical neural networks , 2004 .

[14]  Roberto Tagliaferri,et al.  Textural identification of carbonate rocks by image processing and neural network: Methodology proposal and examples , 2005, Comput. Geosci..

[15]  Ross A. McLean Phillipsastreid Corals from the Frasnian (Upper Devonian) of Western Canada: Taxonomy and Biostratigraphic Significance , 2005 .

[16]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[17]  Thomas G. Dietterich,et al.  Automated insect identification through concatenated histograms of local appearance features: feature vector generation and region detection for deformable objects , 2007, 2007 IEEE Workshop on Applications of Computer Vision (WACV '07).

[18]  N. Macleod,et al.  Automated Taxon Identification in Systematics : Theory, Approaches and Applications , 2007 .

[19]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[20]  Felix Schlagintweit,et al.  Bioerosional structures and pseudoborings from Late Jurassic and Late Cretaceous-Paleocene shallow-water carbonates (Northern Calcareous Alps, Austria and SE France) with special reference to cryptobiotic foraminifera , 2008 .

[21]  J. Tong,et al.  End-Permian Mass Extinction of Foraminifers in the Nanpanjiang Basin, South China , 2009, Journal of Paleontology.

[22]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[23]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[24]  Zhong-Qiang Chen,et al.  Two episodes of foraminiferal extinction near the Permian–Triassic boundary at the Meishan section, South China , 2009 .

[25]  Thomas G. Dietterich,et al.  Automated processing and identification of benthic invertebrate samples , 2010, Journal of the North American Benthological Society.

[26]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[27]  Phil Culverhouse,et al.  Time to automate identification , 2010, Nature.

[28]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[29]  Baba Senowbari-Daryan,et al.  Tubiphytes Maslov, 1956 and description of similar organisms from Triassic reefs of the Tethys , 2013, Facies.

[30]  M. Tramontana,et al.  Platform-to-basin facies transition and tectono-sedimentary processes in the Jurassic deposits of the Furlo area (Umbria-Marche Apennines, Italy) , 2014, Facies.

[31]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[32]  Andrew Zisserman,et al.  Return of the Devil in the Details: Delving Deep into Convolutional Nets , 2014, BMVC.

[33]  John Tran,et al.  cuDNN: Efficient Primitives for Deep Learning , 2014, ArXiv.

[34]  Qiang Chen,et al.  Network In Network , 2013, ICLR.

[35]  Reinhard Gaupp,et al.  Facies analysis and palaeoclimatic significance of ironstones formed during the Eocene greenhouse , 2014 .

[36]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[37]  Jing Chen,et al.  Recovery dynamics of foraminifers and algae following the Permian-Triassic extinction in Qingyan, South China , 2015 .

[38]  Gabriel Cristóbal,et al.  Automated pollen identification using microscopic imaging and texture analysis. , 2015, Micron.

[39]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[40]  Joachim Denzler,et al.  Fine-grained Recognition Datasets for Biodiversity Analysis , 2015, ArXiv.

[41]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[43]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[44]  Zhi Jin,et al.  Improved relation classification by deep recurrent neural networks with data augmentation , 2016, COLING.

[45]  Mark D. McDonnell,et al.  Understanding Data Augmentation for Classification: When to Warp? , 2016, 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA).

[46]  Clara Turetta,et al.  Trace elements and REE geochemistry of Middle Devonian carbonate mounds (Maïder Basin, Eastern Anti-Atlas, Morocco): Implications for early diagenetic processes , 2016 .

[47]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[48]  Jian Sun,et al.  Identity Mappings in Deep Residual Networks , 2016, ECCV.

[49]  Harald Sack,et al.  Fine tuning CNNS with scarce training data — Adapting imagenet to art epoch classification , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[50]  Yang Song,et al.  Improving the Robustness of Deep Neural Networks via Stability Training , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Jana Kulichová,et al.  Molecular and automated identification of the diatom genus Frustulia in northern Europe , 2016 .

[52]  Bartosz Krawczyk,et al.  Learning from imbalanced data: open challenges and future directions , 2016, Progress in Artificial Intelligence.

[53]  M. Bindemann,et al.  Species identification by experts and non-experts: comparing images from field guides , 2016, Scientific Reports.

[54]  M. Ghavidel-syooki,et al.  Stratigraphic evidence for Hirnantian glaciation in the Alborz Mountain Ranges, northeastern Iran , 2017 .

[55]  Hossein Izadi,et al.  An intelligent system for mineral identification in thin sections based on a cascade approach , 2017, Comput. Geosci..

[56]  Martial Hebert,et al.  Growing a Brain: Fine-Tuning by Increasing Model Capacity , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Lei Shu,et al.  Unsupervised feature learning for autonomous rock image classification , 2017, Comput. Geosci..

[58]  Md. Rezaul Karim,et al.  Deep Learning with TensorFlow , 2017 .

[59]  Weihai Chen,et al.  Fine-tuning and visualization of convolutional neural networks , 2017, 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA).

[60]  Guojian Cheng,et al.  Rock images classification by using deep convolution neural network , 2017 .

[61]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[62]  B. V. Belozerov,et al.  Image Processing and Machine Learning Approaches for Petrographic Thin Section Analysis , 2017 .

[63]  Ting Liu,et al.  Recent advances in convolutional neural networks , 2015, Pattern Recognit..

[64]  Yannis Manolopoulos,et al.  Artificial Neural Networks and Machine Learning – ICANN 2018 , 2018, Lecture Notes in Computer Science.

[65]  Isabel S. Fenton,et al.  Reproducibility of species recognition in modern planktonic foraminifera and its implications for analyses of community structure , 2018, Journal of Micropalaeontology.

[66]  Boris Hanin,et al.  Which Neural Net Architectures Give Rise To Exploding and Vanishing Gradients? , 2018, NeurIPS.

[67]  Jing Chen,et al.  Rapid biotic rebound during the late Griesbachian indicates heterogeneous recovery patterns after the Permian-Triassic mass extinction , 2018, GSA Bulletin.

[68]  Gwénaël Caravaca,et al.  Early Triassic environmental dynamics and microbial development during the Smithian–Spathian transition (Lower Weber Canyon, Utah, USA) , 2018 .

[69]  Chao Yang,et al.  A Survey on Deep Transfer Learning , 2018, ICANN.

[70]  Dong Wang,et al.  An automatic methodology for analyzing sorting level of rock particles , 2018, Computational Geosciences.

[71]  Haijun Song,et al.  End-Permian mass extinction of calcareous algae and microproblematica from Liangfengya, South China , 2018, Geobios.

[72]  David L. Roberts,et al.  Species identification by conservation practitioners using online images: accuracy and agreement between experts , 2018, PeerJ.

[73]  Aydin Kaya,et al.  Analysis of transfer learning for deep neural network based plant classification models , 2019, Comput. Electron. Agric..

[74]  A. Maki,et al.  Automated Taxonomic Identification of Insects with Expert-Level Accuracy Using Effective Feature Transfer from Convolutional Networks , 2019, Systematic biology.

[75]  Edgar Lobaton,et al.  Automated species-level identification of planktic foraminifera using convolutional neural networks, with comparison to human performance , 2019, Marine Micropaleontology.

[76]  Allison Y. Hsiang,et al.  Endless Forams: >34,000 Modern Planktonic Foraminiferal Images for Taxonomic Training and Automated Species Recognition Using Convolutional Neural Networks , 2019, Paleoceanography and Paleoclimatology.

[77]  Yuefeng Shen,et al.  Algae, calcitarchs and the Late Ordovician Baltic limestone facies of the Baltic Basin , 2019, Facies.

[78]  Peter Wlodarczak Machine Learning and its Applications , 2019 .

[79]  SEG Technical Program Expanded Abstracts 2019 , 2019 .

[80]  Kurt J. Marfurt,et al.  Convolutional neural networks as aid in core lithofacies classification , 2019, Interpretation.

[81]  Kurt J. Marfurt,et al.  Deep convolutional neural networks as a geological image classification tool , 2019, The Sedimentary Record.

[82]  B. Jones,et al.  Lacustrine stromatolites: Useful structures for environmental interpretation – an example from the Miocene Ebro Basin , 2019, Sedimentology.

[83]  Li Yujian,et al.  A comparative study of fine-tuning deep learning models for plant disease identification , 2019, Comput. Electron. Agric..

[84]  Kyle Mott State Classification of Cooking Objects Using a VGG CNN , 2019, ArXiv.

[85]  Maciej A. Czyzewski Batchboost: Regularization for Stabilizing Training with Resistance to Underfitting & Overfitting , 2020, ArXiv.

[86]  Rogelio Hasimoto-Beltran,et al.  ADMorph: A 3D Digital Microfossil Morphology Dataset for Deep Learning , 2020, IEEE Access.

[87]  K. Marfurt,et al.  CONVOLUTIONAL NEURAL NETWORKS AS AN AID TO BIOSTRATIGRAPHY AND MICROPALEONTOLOGY: A TEST ON LATE PALEOZOIC MICROFOSSILS , 2020, Palaios.

[88]  E. E. Baraboshkin,et al.  Deep Convolutions for In-Depth Automated Rock Typing , 2019, Comput. Geosci..

[89]  Rafael Pires de Lima,et al.  Petrographic microfacies classification with deep convolutional neural networks , 2020, Comput. Geosci..

[90]  Michael J. Benton,et al.  Migration controls extinction and survival patterns of foraminifers during the Permian-Triassic crisis in South China , 2020 .

[91]  Martin Tetard,et al.  Automated recognition by multiple convolutional neural networks of modern, fossil, intact and damaged pollen grains , 2020, Comput. Geosci..