Data-driven modeling for unsteady aerodynamics and aeroelasticity

Abstract Aerodynamic modeling plays an important role in multiphysics and design problems, in addition to experiment and numerical simulation, due to its low-dimensional representation of unsteady aerodynamics. However, in the traditional study of aerodynamics, developing aerodynamic and flow models relies on classical theoretical (potential flow) and empirical investigation, which limits the accuracy and extensibility. Recently, with significant progress in high-fidelity computational fluid dynamic simulation and advanced experimental techniques, very large and diverse fluid data becomes available. This rapid growth of data leads to the development of data-driven aerodynamic and flow modeling. Through advanced mathematical methods from control theory, data science and machine learning, a lot of data-driven aerodynamic models have been proposed. These models are not only more accurate than theoretical models, but also require very low computational cost compared with numerical simulation. At the same time, they help to gain physical insights on flow mechanism, and have shown great potential in engineering applications like flow control, aeroelasticity and optimization. In this review paper, we introduce three typical data-driven methods, including system identification, feature extraction and data fusion. In particular, main approaches to improve the performance of data-driven models in accuracy, stability and generalization capability are reported. The efficacy of data-driven methods in modeling unsteady aerodynamics is described by several benchmark cases in fluid mechanics and aeroelasticity. Finally, future development and potential applications in related areas are concluded.

[1]  Steven L. Brunton,et al.  Multiresolution Dynamic Mode Decomposition , 2015, SIAM J. Appl. Dyn. Syst..

[2]  L. Morino,et al.  ON THE INSTABILITY OF A SPRING-MOUNTED CIRCULAR CYLINDER IN A VISCOUS FLOW AT LOW REYNOLDS NUMBERS , 2000 .

[3]  Weiwei Zhang,et al.  Efficient Method for Limit Cycle Flutter Analysis Based on Nonlinear Aerodynamic Reduced-Order Models , 2012 .

[4]  Peter J. Schmid,et al.  Sparsity-promoting dynamic mode decomposition , 2012, 1309.4165.

[5]  Christopher C. Pain,et al.  Non-intrusive reduced order modelling of fluid–structure interactions , 2016 .

[6]  Petros Koumoutsakos,et al.  Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks , 2018, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  Karen Willcox,et al.  Provably Convergent Multifidelity Optimization Algorithm Not Requiring High-Fidelity Derivatives , 2012 .

[8]  Matthew O. Williams,et al.  A kernel-based method for data-driven koopman spectral analysis , 2016 .

[9]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[10]  S. Görtz,et al.  Fusing wind-tunnel measurements and CFD data using constrained gappy proper orthogonal decomposition , 2019, Aerospace Science and Technology.

[11]  Steven L. Brunton,et al.  Deep learning for universal linear embeddings of nonlinear dynamics , 2017, Nature Communications.

[12]  Tim Colonius,et al.  Guide to Spectral Proper Orthogonal Decomposition , 2020, AIAA Journal.

[13]  P. Goulart,et al.  Optimal mode decomposition for unsteady flows , 2013, Journal of Fluid Mechanics.

[14]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[15]  Max M. J. Opgenoord,et al.  Physics-Based Low-Order Model for Transonic Flutter Prediction , 2018 .

[16]  J. Templeton,et al.  Reynolds averaged turbulence modelling using deep neural networks with embedded invariance , 2016, Journal of Fluid Mechanics.

[17]  Weiwei Zhang,et al.  A novel unsteady aerodynamic Reduced-Order Modeling method for transonic aeroelastic optimization , 2018, Journal of Fluids and Structures.

[18]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[19]  Origins of atypical shock buffet motions on a supercritical aerofoil , 2020 .

[20]  Guoqiang Peter Zhang,et al.  Time series forecasting using a hybrid ARIMA and neural network model , 2003, Neurocomputing.

[21]  Kirk R. Brouwer,et al.  Surrogate-based aeroelastic loads prediction in the presence of shock-induced separation , 2020 .

[22]  Weiwei Zhang,et al.  Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers , 2015, Journal of Fluid Mechanics.

[23]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[24]  Hui Tang,et al.  Active flow control using machine learning: A brief review , 2020, Journal of Hydrodynamics.

[25]  K. Washizu,et al.  Aeroelastic instability of rectangular cylinders in a heaving mode , 1978 .

[26]  Juan J. Alonso,et al.  Airfoil design optimization using reduced order models based on proper orthogonal decomposition , 2000 .

[27]  Weiwei Zhang,et al.  Control law design for transonic aeroservoelasticity , 2007 .

[28]  Russell M. Cummings,et al.  Unsteady Aerodynamic Modeling of Aircraft Control Surfaces by Indicial Response Methods , 2013 .

[29]  Paris Perdikaris,et al.  Inferring solutions of differential equations using noisy multi-fidelity data , 2016, J. Comput. Phys..

[30]  Alain Dervieux,et al.  Reduced-order modeling for unsteady transonic flows around an airfoil , 2007 .

[31]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[32]  E. Ferrer,et al.  A composite dynamic mode decomposition analysis of turbulent channel flows , 2019, Physics of Fluids.

[33]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[34]  Stefan Görtz,et al.  Alternative Cokriging Method for Variable-Fidelity Surrogate Modeling , 2012 .

[35]  Andrew Arena,et al.  Accelerating computational fluid dynamics based aeroelastic predictions using system identification , 2001 .

[36]  Natália C G de Paula,et al.  Volterra Kernels Assessment via Time-Delay Neural Networks for Nonlinear Unsteady Aerodynamic Loading Identification. , 2019, AIAA journal. American Institute of Aeronautics and Astronautics.

[37]  Patrick Reisenthel,et al.  A nonlinear indicial prediction tool for unsteady aerodynamic modeling , 1998 .

[38]  B. R. Noack,et al.  Cluster-based network model of an incompressible mixing layer , 2020, 2001.02911.

[39]  Yue-Tzu Yang,et al.  Nonlinear Stability Analysis of Thin Viscoelastic Film Flowing Down on the Inner Surface of a Rotating Vertical Cylinder , 2005 .

[40]  Sj Steven Hulshoff,et al.  POD enriched boundary models and their optimal stabilisation , 2015 .

[41]  A. Jirásek,et al.  Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics , 2014 .

[42]  Christopher J. Ruscher,et al.  APPLICATION OF DATA FUSION TO FLUID DYNAMIC DATA , 2014 .

[43]  Kai Fukami,et al.  Nonlinear mode decomposition with convolutional neural networks for fluid dynamics , 2019, Journal of Fluid Mechanics.

[44]  Michael Mifsud Reduced-order modelling for high-speed aerial weapon aerodynamics , 2008 .

[45]  Chao Yang,et al.  Identification and robust limit-cycle-oscillation analysis of uncertain aeroelastic system , 2011 .

[46]  Weiwei Zhang,et al.  Layered reduced-order models for nonlinear aerodynamics and aeroelasticity , 2017 .

[47]  Teng Long,et al.  A reduced order aerothermodynamic modeling framework for hypersonic vehicles based on surrogate and POD , 2015 .

[48]  Weiwei Zhang,et al.  Mode competition in galloping of a square cylinder at low Reynolds number , 2019, Journal of Fluid Mechanics.

[49]  Naoya Takeishi,et al.  Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition , 2017, NIPS.

[50]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[51]  Tao Xiang,et al.  Learning to Compare: Relation Network for Few-Shot Learning , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[52]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[53]  Tyson L. Hedrick,et al.  A multi-fidelity modelling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight , 2013, Journal of Fluid Mechanics.

[54]  Karthik Duraisamy,et al.  Physics-Informed Probabilistic Learning of Linear Embeddings of Nonlinear Dynamics with Guaranteed Stability , 2019, SIAM J. Appl. Dyn. Syst..

[55]  Christian W. Dawson,et al.  The effect of different basis functions on a radial basis function network for time series prediction: A comparative study , 2006, Neurocomputing.

[56]  D. Myers Kriging, cokriging, radial basis functions and the role of positive definiteness , 1992 .

[57]  K. Duraisamy,et al.  Non-Markovian Closure Models for Large Eddy Simulations using the Mori-Zwanzig Formalism , 2016, 1611.03311.

[58]  Lennart Ljung,et al.  Identification of nonlinear systems , 2019, 2019 Proceedings of the Conference on Control and its Applications.

[59]  Haiyan Hu,et al.  Nonlinear Reduced-Order Modeling for Multiple-Input/Multiple-Output Aerodynamic Systems , 2014 .

[60]  Earl H. Dowell,et al.  Experimental and Theoretical Study on Aeroelastic Response of High-Aspect-Ratio Wings , 2001 .

[61]  Akira Saito,et al.  Data-driven experimental modal analysis by Dynamic Mode Decomposition , 2020 .

[62]  Haiyan Hu,et al.  Efficient reduced-order modeling of unsteady aerodynamics robust to flight parameter variations , 2014 .

[63]  C. Merkle,et al.  Investigation of the Stability of POD-Galerkin Techniques for Reduced Order Model Development , 2016 .

[64]  R. Zimmermann,et al.  Interpolation-based reduced-order modelling for steady transonic flows via manifold learning , 2014 .

[65]  Kookjin Lee,et al.  Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders , 2018, J. Comput. Phys..

[66]  R. Dwight,et al.  Reconstruction of Turbulent Flows at High Reynolds Numbers Using Data Assimilation Techniques , 2020 .

[67]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[68]  Peretz P. Friedmann,et al.  An aerothermoelastic analysis framework with reduced-order modeling applied to composite panels in hypersonic flows , 2020 .

[69]  Geoffrey T. Parks,et al.  Multi-fidelity non-intrusive polynomial chaos based on regression , 2016 .

[70]  Peretz P. Friedmann,et al.  Multifidelity coKriging for High-Dimensional Output Functions with Application to Hypersonic Airloads Computation , 2018, AIAA Journal.

[71]  Minglang Yin,et al.  Novel Wiener models with a time-delayed nonlinear block and their identification , 2016 .

[72]  Kunihiko Taira,et al.  Networked-oscillator-based modeling and control of unsteady wake flows. , 2017, Physical review. E.

[73]  Sami F. Masri,et al.  A hybrid parametric/nonparametric approach for the identification of nonlinear systems , 1994 .

[74]  Chao Yan,et al.  Non-intrusive reduced-order modeling for fluid problems: A brief review , 2019, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering.

[75]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization with Time Spectral Flutter Adjoint , 2019, AIAA Scitech 2019 Forum.

[76]  Andrew R. Crowell,et al.  Model Reduction of Computational Aerothermodynamics for Hypersonic Aerothermoelasticity , 2012 .

[77]  Laurent Cordier,et al.  Calibration of POD reduced‐order models using Tikhonov regularization , 2009 .

[78]  Matthew F. Barone,et al.  Nonlinear Model Reduction of von Kármán Plates Under Linearized Compressible Fluid Flow , 2012 .

[79]  Clarence W. Rowley,et al.  Online dynamic mode decomposition for time-varying systems , 2017, SIAM J. Appl. Dyn. Syst..

[80]  Petros Koumoutsakos,et al.  Machine Learning for Fluid Mechanics , 2019, Annual Review of Fluid Mechanics.

[81]  Walter A. Silva,et al.  Application of nonlinear systems theory to transonic unsteady aerodynamic responses , 1993 .

[82]  Bernd R. Noack,et al.  Model reduction using Dynamic Mode Decomposition , 2014 .

[83]  N. Adams,et al.  Mode interactions of a high-subsonic deep cavity , 2017 .

[84]  Clarence W. Rowley,et al.  Dynamic mode decomposition for large and streaming datasets , 2014, 1406.7187.

[85]  Yi Liu,et al.  Dynamic mode extrapolation to improve the efficiency of dual time stepping method , 2018, J. Comput. Phys..

[86]  A. Ronch,et al.  Extension of analytical indicial aerodynamics to generic trapezoidal wings in subsonic flow , 2018 .

[87]  Ali H. Nayfeh,et al.  On the stability and extension of reduced-order Galerkin models in incompressible flows , 2009 .

[88]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[89]  E. Ferrer,et al.  Low cost 3D global instability analysis and flow sensitivity based on dynamic mode decomposition and high‐order numerical tools , 2014 .

[90]  N. T. Son A real time procedure for affinely dependent parametric model order reduction using interpolation on Grassmann manifolds , 2013 .

[91]  Russell M. Cummings,et al.  Numerical Simulation and Reduced-Order Aerodynamic Modeling of a Lambda Wing Configuration , 2016 .

[92]  Peretz P. Friedmann,et al.  Aeroelastic and Aerothermoelastic Analysis in Hypersonic Flow: Past, Present, and Future , 2011 .

[93]  K. Willcox Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition , 2004 .

[94]  J. G. Leishman,et al.  A Semi-Empirical Model for Dynamic Stall , 1989 .

[95]  E. Dowell,et al.  An adaptive controller for nonlinear flutter suppression and free-play compensation , 2017 .

[96]  Matthias Haupt,et al.  Efficient Surrogate Modelling of Nonlinear Aerodynamics in Aerostructural Coupling Schemes , 2014 .

[97]  Edward F. Crawley,et al.  Calculation of unsteady flows in turbomachinery using the linearized Euler equations , 1989 .

[98]  H. Akaike A new look at the statistical model identification , 1974 .

[99]  Weiwei Zhang,et al.  Unsteady aerodynamic modeling based on fuzzy scalar radial basis function neural networks , 2019, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering.

[100]  Anthony T. Patera,et al.  A stabilized POD model for turbulent flows over a range of Reynolds numbers: Optimal parameter sampling and constrained projection , 2018, J. Comput. Phys..

[101]  J. Leishman Validation of approximate indicial aerodynamic functions for two-dimensional subsonic flow , 1988 .

[102]  Earl H. Dowell,et al.  Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation , 2013, Journal of Fluid Mechanics.

[103]  Joaquim R. R. A. Martins,et al.  Multidisciplinary design optimization: A survey of architectures , 2013 .

[104]  W. Silva,et al.  Identification of Nonlinear Aeroelastic Systems Based on the Volterra Theory: Progress and Opportunities , 2005 .

[105]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[106]  Karthik Duraisamy,et al.  Challenges in Reduced Order Modeling of Reacting Flows , 2018, 2018 Joint Propulsion Conference.

[107]  Imran Akhtar,et al.  Nonlinear closure modeling in reduced order models for turbulent flows: a dynamical system approach , 2020, Nonlinear Dynamics.

[108]  Pierre Sagaut,et al.  Reconstruction of unsteady viscous flows using data assimilation schemes , 2016, J. Comput. Phys..

[109]  P. Seiler,et al.  A method to construct reduced‐order parameter‐varying models , 2017 .

[110]  Cheng Huang,et al.  Reduced-Order Modeling Framework for Combustor Instabilities Using Truncated Domain Training , 2018, AIAA Journal.

[111]  Vito Volterra,et al.  Theory of Functionals and of Integral and Integro-Differential Equations , 2005 .

[112]  Earl H. Dowell,et al.  Modeling of Fluid-Structure Interaction , 2001 .

[113]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[114]  Xing Zhang,et al.  Using machine learning to detect the turbulent region in flow past a circular cylinder , 2020, Journal of Fluid Mechanics.

[115]  S. A. Billings,et al.  The wavelet-NARMAX representation: A hybrid model structure combining polynomial models with multiresolution wavelet decompositions , 2005, Int. J. Syst. Sci..

[116]  P. Sagaut,et al.  Calibrated reduced-order POD-Galerkin system for fluid flow modelling , 2005 .

[117]  Weiwei Zhang,et al.  Reduced-Order Modeling for Nonlinear Aeroelasticity with Varying Mach Numbers , 2018, Journal of Aerospace Engineering.

[118]  B.H.K. Lee,et al.  Self-sustained shock oscillations on airfoils at transonic speeds , 2001 .

[119]  Kunihiko Taira,et al.  Cluster-based feedback control of turbulent post-stall separated flows , 2018, Journal of Fluid Mechanics.

[120]  Carlos E. S. Cesnik,et al.  Reduced-Order Aerothermoelastic Framework for Hypersonic Vehicle Control Simulation , 2010 .

[121]  L. Ljung,et al.  Identification of composite local linear state-space models using a projected gradient search , 2002 .

[122]  Rajeev K. Jaiman,et al.  Model reduction and mechanism for the vortex-induced vibrations of bluff bodies , 2017, Journal of Fluid Mechanics.

[123]  Gang Sun,et al.  A review of the artificial neural network surrogate modeling in aerodynamic design , 2019, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering.

[124]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[125]  Dario H. Baldelli,et al.  Control-Oriented Flutter/Limit-Cycle-Oscillation Prediction Framework , 2008 .

[126]  Jian-Xun Wang,et al.  Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning , 2019, Physica D: Nonlinear Phenomena.

[127]  E. de Langre,et al.  Coupling of Structure and Wake Oscillators in Vortex-Induced Vibrations , 2004 .

[128]  Zhijun Yang,et al.  An improved nonlinear reduced-order modeling for transonic aeroelastic systems , 2020 .

[129]  Dongping Jin,et al.  Efficient nonlinear reduced-order modeling for synthetic-jet-based control at high angle of attack , 2017 .

[130]  B. R. Noack,et al.  Low-order model for successive bifurcations of the fluidic pinball , 2018, Journal of Fluid Mechanics.

[131]  Gilead Tadmor,et al.  A generalized mean-field model of the natural and high-frequency actuated flow around a high-lift configuration , 2009 .

[132]  A. Jirásek,et al.  Computational Approximation of Nonlinear Unsteady Aerodynamics Using an Aerodynamic Model Hierarchy , 2011 .

[133]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[134]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[135]  Petros Koumoutsakos,et al.  Data-assisted reduced-order modeling of extreme events in complex dynamical systems , 2018, PloS one.

[136]  Weiwei Zhang,et al.  An improved criterion to select dominant modes from dynamic mode decomposition , 2017 .

[137]  Bryan Glaz,et al.  Reduced-Order Dynamic Stall Modeling with Swept Flow Effects Using a Surrogate-Based Recurrence Framework , 2013 .

[138]  Bryon R. Maner,et al.  Polymerization reactor control using autoregressive‐plus Volterra‐based MPC , 1997 .

[139]  D. Myers Matrix formulation of co-kriging , 1982 .

[140]  Qian Wang,et al.  Recurrent neural network closure of parametric POD-Galerkin reduced-order models based on the Mori-Zwanzig formalism , 2020, J. Comput. Phys..

[141]  Hester Bijl,et al.  Comparing different dynamic stall models , 2013 .

[142]  K. Morgan,et al.  Reduced order modelling for unsteady fluid flow using proper orthogonal decomposition and radial basis functions , 2013 .

[143]  Weiwei Zhang,et al.  Reduced-order thrust modeling for an efficiently flapping airfoil using system identification method , 2017 .

[144]  Charles G. Speziale,et al.  ANALYTICAL METHODS FOR THE DEVELOPMENT OF REYNOLDS-STRESS CLOSURES IN TURBULENCE , 1990 .

[145]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[146]  Bernd R. Noack,et al.  Locally linear embedding for transient cylinder wakes , 2019, 1906.07822.

[147]  Jan S. Hesthaven,et al.  Non-intrusive reduced order modeling of nonlinear problems using neural networks , 2018, J. Comput. Phys..

[148]  Weiwei Zhang,et al.  A new viewpoint on the mechanism of transonic single-degree-of-freedom flutter , 2016 .

[149]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox, Version 2.0 , 2002 .

[150]  Russell M. Cummings,et al.  A Computional Investigation into the Use of Response Functions for Aerodynamic Loads Modeling , 2011 .

[151]  David J. Lucia,et al.  Projection methods for reduced order models of compressible flows , 2003 .

[152]  Kwok Leung Lai,et al.  Identification of a Hammerstein model for wing flutter analysis using CFD data and correlation method , 2010, Proceedings of the 2010 American Control Conference.

[153]  Shun He,et al.  Transonic Limit Cycle Oscillation Analysis Using Aerodynamic Describing Functions and Superposition Principle , 2014 .

[154]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[155]  Matthias W. Seeger,et al.  Gaussian Processes For Machine Learning , 2004, Int. J. Neural Syst..

[156]  C. Pain,et al.  Model identification of reduced order fluid dynamics systems using deep learning , 2017, International Journal for Numerical Methods in Fluids.

[157]  Hector Budman,et al.  Structured Singular Valued based robust nonlinear model predictive controller using Volterra series models , 2010 .

[158]  Richard D. Sandberg,et al.  Turbulence Model Development using CFD-Driven Machine Learning , 2019 .

[159]  J. Hesthaven,et al.  Greedy Nonintrusive Reduced Order Model for Fluid Dynamics , 2018, AIAA Journal.

[160]  Herbert Wagner Über die Entstehung des dynamischen Auftriebes von Tragflügeln , 1925 .

[161]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[162]  A. Neely,et al.  Efficient uncertainty quantification for a hypersonic trailing-edge flap, using gradient-enhanced kriging , 2018, Aerospace Science and Technology.

[163]  Traian Iliescu,et al.  A long short-term memory embedding for hybrid uplifted reduced order models , 2019, Physica A: Statistical Mechanics and its Applications.

[164]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison , 2011, 1106.3585.

[165]  Richard P. Dwight,et al.  Uncertainty quantification for a sailing yacht hull, using multi-fidelity kriging , 2015 .

[166]  F. Guéniat,et al.  A dynamic mode decomposition approach for large and arbitrarily sampled systems , 2015 .

[167]  T. Colonius,et al.  Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis , 2017, Journal of Fluid Mechanics.

[168]  Kazuomi Yamamoto,et al.  Efficient Optimization Design Method Using Kriging Model , 2005 .

[169]  Nicholas Zabaras,et al.  Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification , 2018, J. Comput. Phys..

[170]  I. G. Currie,et al.  Lift-Oscillator Model of Vortex-Induced Vibration , 1970 .

[171]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[172]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[173]  Weiwei Zhang,et al.  Mode Multigrid - A novel convergence acceleration method. , 2018 .

[174]  Stefan Görtz,et al.  Improved extrapolation of steady turbulent aerodynamics using a non-linear POD-based reduced order model , 2012, The Aeronautical Journal (1968).

[175]  Clarence W. Rowley,et al.  Spectral analysis of fluid flows using sub-Nyquist-rate PIV data , 2014, Experiments in Fluids.

[176]  Yixing Wang,et al.  A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network , 2019 .

[177]  Simao Marques,et al.  Nonlinear Aerodynamic and Aeroelastic Model Reduction using a Discrete Empirical Interpolation Method , 2017 .

[178]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[179]  T. Franz,et al.  Reduced-order models for aerodynamic applications, loads and MDO , 2018 .

[180]  Benjamin Peherstorfer,et al.  Dynamic data-driven model reduction: adapting reduced models from incomplete data , 2016, Adv. Model. Simul. Eng. Sci..

[181]  Daniella E. Raveh,et al.  Reduced-Order Models for Nonlinear Unsteady Aerodynamics , 2001 .

[182]  Jiaqing Kou,et al.  Multi‐fidelity surrogate reduced‐order modeling of steady flow estimation , 2020, International Journal for Numerical Methods in Fluids.

[183]  Robert H. Scanlan,et al.  A Modern Course in Aeroelasticity , 1981, Solid Mechanics and Its Applications.

[184]  Weiwei Zhang,et al.  Efficient Aeroelastic Solution Based on Time-Spectral Fluid–Structure Interaction Method , 2019, AIAA Journal.

[185]  David G. MacManus,et al.  A variable‐fidelity aerodynamic model using proper orthogonal decomposition , 2016 .

[186]  Karthik Duraisamy,et al.  Modal Analysis of Fluid Flows: Applications and Outlook , 2019, AIAA Journal.

[187]  Weiwei Zhang,et al.  Reduced-Order-Model-Based Flutter Analysis at High Angle of Attack , 2007 .

[188]  Daniele Venturi,et al.  Gappy data and reconstruction procedures for flow past a cylinder , 2004, Journal of Fluid Mechanics.

[189]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[190]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[191]  Fadhel M. Ghannouchi,et al.  Digital Predistortion of LTE-A Power Amplifiers Using Compressed-Sampling-Based Unstructured Pruning of Volterra Series , 2014, IEEE Transactions on Microwave Theory and Techniques.

[192]  Weiwei Zhang,et al.  The interaction between flutter and buffet in transonic flow , 2015 .

[193]  A. Mohan,et al.  A Deep Learning based Approach to Reduced Order Modeling for Turbulent Flow Control using LSTM Neural Networks , 2018, 1804.09269.

[194]  An-Bang Wang,et al.  Investigation of the resonant phenomenon of flow around a vibrating cylinder in a subcritical regime , 2011 .

[195]  Heng Xiao,et al.  Physics-Informed Machine Learning for Predictive Turbulence Modeling: Using Data to Improve RANS Modeled Reynolds Stresses , 2016 .

[196]  Jian-Xun Wang,et al.  Physics-constrained bayesian neural network for fluid flow reconstruction with sparse and noisy data , 2020, Theoretical and Applied Mechanics Letters.

[197]  Xiumin Gao,et al.  Identification of nonlinear aerodynamic systems with application to transonic aeroelasticity of aircraft structures , 2020, Nonlinear Dynamics.

[198]  Y. Nie,et al.  Characterizing complex flows using adaptive sparse dynamic mode decomposition with error approximation , 2019, International Journal for Numerical Methods in Fluids.

[199]  Dan Su,et al.  A reduced order model for uncoupled and coupled cascade flutter analysis , 2016 .

[200]  Sun Jian,et al.  Active flutter suppression control law design method based on balanced proper orthogonal decomposition reduced order model , 2012 .

[201]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[202]  Weiwei Zhang,et al.  Research on refined reconstruction method of airfoil pressure based on compressed sensing , 2021 .

[203]  Ken Badcock,et al.  Nonlinear model reduction for flexible aircraft control design , 2012 .

[204]  Nan Jiang,et al.  Dynamic mode decomposition of hairpin vortices generated by a hemisphere protuberance , 2012 .

[205]  Dongxu Han,et al.  Fast Calculation of the Soil Temperature Field around a Buried Oil Pipeline using a Body-Fitted Coordinates-Based POD-Galerkin Reduced-Order Model , 2013 .

[206]  Ashraf Omran,et al.  Full Envelope Nonlinear Parameter-Varying Model Approach for Atmospheric Flight Dynamics , 2012 .

[207]  Rui Huang,et al.  Parametric reduced-order modeling of unsteady aerodynamics for hypersonic vehicles , 2019, Aerospace Science and Technology.

[208]  Sundaram Suresh,et al.  Lift coefficient prediction at high angle of attack using recurrent neural network , 2003 .

[209]  Sanjay Mittal,et al.  Lock-in in vortex-induced vibration , 2016, Journal of Fluid Mechanics.

[210]  Weiwei Zhang,et al.  Aeroservoelastic Analysis for Transonic Missile Based on Computational Fluid Dynamics , 2009 .

[211]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[212]  Joseba Murua,et al.  Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics , 2012 .

[213]  R. Bhat Nonlinear Aeroelasticity , 2018, Principles of Aeroelasticity.

[214]  David R. Williams,et al.  Linear models for control of cavity flow oscillations , 2006, Journal of Fluid Mechanics.

[215]  Charles Meneveau,et al.  Application of a self-organizing map to identify the turbulent-boundary-layer interface in a transitional flow , 2019, Physical Review Fluids.

[216]  Vincent Zander,et al.  Online Dynamic Mode Decomposition Methods for the Investigation of Unsteady Aerodynamics of the DrivAer Model (Second Report) - Application on Velocity Fields - , 2018 .

[217]  Andrea Serani,et al.  Deep Autoencoder for Off-Line Design-Space Dimensionality Reduction in Shape Optimization , 2018 .

[218]  Earl H. Dowell,et al.  Reduced-Order Modeling of Flutter and Limit-Cycle Oscillations Using the Sparse Volterra Series , 2012 .

[219]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[220]  K. Willcox,et al.  Interpolation among reduced‐order matrices to obtain parameterized models for design, optimization and probabilistic analysis , 2009 .

[221]  P Perdikaris,et al.  Multi-fidelity modelling via recursive co-kriging and Gaussian–Markov random fields , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[222]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[223]  E. Ferrer,et al.  A transition prediction method for flow over airfoils based on high-order dynamic mode decomposition , 2019, Chinese Journal of Aeronautics.

[224]  Walter A. Silva,et al.  Development of Reduced-Order Models for Aeroelastic Analysis and Flutter Prediction Using the CFL3Dv6.0 Code , 2002 .

[225]  Taehyoun Kim,et al.  Efficient Reduced-Order System Identification for Linear Systems with Multiple Inputs , 2005 .

[226]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[227]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[228]  Guoxiang Gu,et al.  Feedback Stabilization of a Reduced-Order Model of a Jet in Crossflow , 2015 .

[229]  Weiwei Zhang,et al.  An approach to enhance the generalization capability of nonlinear aerodynamic reduced-order models , 2016 .

[230]  Benjamin Peherstorfer,et al.  Localized Discrete Empirical Interpolation Method , 2014, SIAM J. Sci. Comput..

[231]  Patrick Reisenthel,et al.  Development of a nonlinear indicial model using response functions generated by a neural network , 1997 .

[232]  Jeffrey P. Thomas,et al.  Nonlinear Inviscid Aerodynamic Effects on Transonic Divergence, Flutter, and Limit-Cycle Oscillations , 2001 .

[233]  Karen Willcox,et al.  Goal-oriented, model-constrained optimization for reduction of large-scale systems , 2007, J. Comput. Phys..

[234]  Raymond L. Fontenot,et al.  The use of dynamic basis functions in proper orthogonal decomposition , 2015 .

[235]  Weiwei Zhang,et al.  Comparisons of Two Reduced-Order Models for Linearized Unsteady Aerodynamic Identification , 2019, 1905.03250.

[236]  Stefan Görtz,et al.  Reduced order modeling of steady flows subject to aerodynamic constraints , 2014 .

[237]  Clarence W. Rowley,et al.  Evaluating the accuracy of the dynamic mode decomposition , 2016, Journal of Computational Dynamics.

[238]  M. Wei,et al.  A hybrid stabilization approach for reduced‐order models of compressible flows with shock‐vortex interaction , 2019, International Journal for Numerical Methods in Engineering.

[239]  Haiyan Hu,et al.  Open/Closed-Loop Aeroservoelastic Predictions via Nonlinear, Reduced-Order Aerodynamic Models , 2015 .

[240]  Michael C. Romanowski Reduced order unsteady aerodynamic and aeroelastic models using Karhunen-Loeve eigenmodes , 1996 .

[241]  Steven L. Brunton,et al.  Network structure of two-dimensional decaying isotropic turbulence , 2016, Journal of Fluid Mechanics.

[242]  Jeffrey P. Thomas,et al.  Proper Orthogonal Decomposition Technique for Transonic Unsteady Aerodynamic Flows , 2000 .

[244]  E. Valero,et al.  Dynamic Mode Decomposition Analysis of Spatially Agglomerated Flow Databases , 2020 .

[245]  Clarence W. Rowley,et al.  Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition , 2014, Experiments in Fluids.

[246]  A. Quarteroni,et al.  Reduced Basis Methods for Partial Differential Equations: An Introduction , 2015 .

[247]  Jack J. McNamara,et al.  Model order reduction using sparse coding exemplified for the lid-driven cavity , 2016, Journal of Fluid Mechanics.

[248]  Matthew F. Barone,et al.  Stabilization of projection-based reduced order models for linear time-invariant systems via optimization-based eigenvalue reassignment , 2014 .

[249]  Dimitri N. Mavris,et al.  Koopman-Based Approach to Nonintrusive Projection-Based Reduced-Order Modeling with Black-Box High-Fidelity Models , 2018, AIAA Journal.

[250]  W. Ning,et al.  Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines , 1998 .

[251]  Bernd R. Noack,et al.  Cluster-based reduced-order modelling of a mixing layer , 2013, Journal of Fluid Mechanics.

[252]  Michele Milano,et al.  Neural network modeling for near wall turbulent flow , 2002 .

[253]  Lennart Ljung,et al.  Perspectives on system identification , 2010, Annu. Rev. Control..

[254]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[255]  Karen Willcox,et al.  Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications , 2007 .

[256]  Jeff D. Eldredge,et al.  Machine-Learning-Based Detection of Aerodynamic Disturbances Using Surface Pressure Measurements , 2019 .

[257]  Weiwei Zhang,et al.  Mechanism of frequency lock-in in transonic buffeting flow , 2017, Journal of Fluid Mechanics.

[258]  Shun He,et al.  Nonlinear aeroelastic behavior of an airfoil with free-play in transonic flow , 2020 .

[259]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .

[260]  Lin Zhou,et al.  Dynamic mode decomposition of forced spatially developed transitional jets , 2015 .

[261]  R. Murray,et al.  Model reduction for compressible flows using POD and Galerkin projection , 2004 .

[262]  C. Allery,et al.  Non intrusive method for parametric model order reduction using a bi-calibrated interpolation on the Grassmann manifold , 2018, J. Comput. Phys..

[263]  Javier Jimenez,et al.  Computers and turbulence , 2019, European Journal of Mechanics - B/Fluids.

[264]  C. Farhat,et al.  Design optimization using hyper-reduced-order models , 2015 .

[265]  Carlos E. S. Cesnik,et al.  Reduced-Order Modeling of Unsteady Aerodynamics Across Multiple Mach Regimes , 2014 .

[266]  Brendan Colvert,et al.  Classifying vortex wakes using neural networks , 2017, Bioinspiration & biomimetics.

[267]  Soledad Le Clainche Martínez,et al.  Higher Order Dynamic Mode Decomposition , 2017, SIAM J. Appl. Dyn. Syst..

[268]  T. Theodorsen General Theory of Aerodynamic Instability and the Mechanism of Flutter , 1934 .

[269]  Clarence W. Rowley,et al.  Linearly-Recurrent Autoencoder Networks for Learning Dynamics , 2017, SIAM J. Appl. Dyn. Syst..

[270]  Kenneth C. Hall,et al.  EIGENANALYSIS OF UNSTEADY FLOW ABOUT AIRFOILS, CASCADES, AND WINGS , 1994 .

[271]  Omer San,et al.  An artificial neural network framework for reduced order modeling of transient flows , 2018, Commun. Nonlinear Sci. Numer. Simul..

[272]  Soledad Le Clainche,et al.  A reduced-order model for compressible flows with buffeting condition using higher order dynamic mode decomposition with a mode selection criterion , 2018 .

[273]  George Em Karniadakis,et al.  NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations , 2020, J. Comput. Phys..

[274]  Soledad Le Clainche Martínez,et al.  Spatio-Temporal Koopman Decomposition , 2018, J. Nonlinear Sci..

[275]  Norman H. Princen,et al.  Multifidelity Data Fusion: Application to Blended-Wing-Body Multidisciplinary Analysis Under Uncertainty , 2020 .

[276]  Eusebio Valero,et al.  A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses , 2018 .

[277]  A. Gaitonde,et al.  Reduced order state‐space models from the pulse responses of a linearized CFD scheme , 2003 .

[278]  Vincent Zander,et al.  Low-Memory Reduced-Order Modelling With Dynamic Mode Decomposition Applied on Unsteady Wheel Aerodynamics , 2017 .

[279]  D. A. Bistrian,et al.  Randomized dynamic mode decomposition for nonintrusive reduced order modelling , 2016, 1611.04884.

[280]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[281]  Weiwei Zhang,et al.  The lowest Reynolds number of vortex-induced vibrations , 2017 .

[282]  Marco Fossati,et al.  Local Reduced-Order Modeling and Iterative Sampling for Parametric Analyses of Aero-Icing Problems , 2015 .

[283]  Karthik Duraisamy,et al.  A paradigm for data-driven predictive modeling using field inversion and machine learning , 2016, J. Comput. Phys..

[284]  Karthik Duraisamy,et al.  Data-Driven Discovery of Closure Models , 2018, SIAM J. Appl. Dyn. Syst..

[285]  Zhao Liu,et al.  Nonlinear unsteady bridge aerodynamics: Reduced-order modeling based on deep LSTM networks , 2020 .

[286]  C. Xie,et al.  Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence , 2019, Physics of Fluids.

[287]  Katepalli R. Sreenivasan,et al.  A perspective on machine learning in turbulent flows , 2020 .

[288]  Patrick C. Murphy,et al.  Nonlinear Unsteady Aerodynamic Modeling Using Wind-Tunnel and Computational Data , 2017 .

[289]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[290]  Hui Li,et al.  A novel long short-term memory neural-network-based self-excited force model of limit cycle oscillations of nonlinear flutter for various aerodynamic configurations , 2020 .

[291]  Rajeev K. Jaiman,et al.  Feedback control of unstable flow and vortex-induced vibration using the eigensystem realization algorithm , 2017, Journal of Fluid Mechanics.

[292]  Sanjay Mittal,et al.  Vortex-induced vibrations at subcritical Re , 2005, Journal of Fluid Mechanics.

[293]  David R. Williams,et al.  Reduced-order unsteady aerodynamic models at low Reynolds numbers , 2013, Journal of Fluid Mechanics.

[294]  Roger Ohayon,et al.  A nonlinear POD-Galerkin reduced-order model for compressible flows taking into account rigid body motions , 2011 .

[295]  Jean-Marc Chomaz,et al.  An asymptotic expansion for the vortex-induced vibrations of a circular cylinder , 2011, Journal of Fluid Mechanics.

[296]  Scott T. M. Dawson,et al.  Model Reduction for Flow Analysis and Control , 2017 .

[297]  Antony Jameson,et al.  Time Spectral Method for Periodic Unsteady Computations over Two- and Three- Dimensional Bodies , 2005 .

[298]  E. Dowell,et al.  Modal Analysis of Transonic Shock Buffet on 2D Airfoil , 2019, AIAA Journal.

[299]  L. Librescu,et al.  Aeroelastic Response of Nonlinear Wing Sections Using a Functional Series Technique , 2002 .

[300]  F. Marques,et al.  IDENTIFICATION AND PREDICTION OF UNSTEADY TRANSONIC AERODYNAMIC LOADS BY MULTI-LAYER FUNCTIONALS , 2001 .

[301]  Bryan Glaz,et al.  Reduced-Order Nonlinear Unsteady Aerodynamic Modeling Using a Surrogate-Based Recurrence Framework , 2010 .

[302]  B. R. Noack,et al.  Closed-Loop Turbulence Control: Progress and Challenges , 2015 .

[303]  Weiwei Zhang,et al.  Nonlinear Aerodynamic Reduced-Order Model for Limit-Cycle Oscillation and Flutter , 2016 .

[304]  Earl H. Dowell,et al.  Reduced-Order Models for Computational-Fluid-Dynamics-Based Nonlinear Aeroelastic Problems , 2015 .

[305]  J. Cole,et al.  Calculation of plane steady transonic flows , 1970 .

[306]  Weiwei Zhang,et al.  Accelerating the convergence of steady adjoint equations by dynamic mode decomposition , 2020 .

[307]  Jing Li,et al.  The performance of proper orthogonal decomposition in discontinuous flows , 2016 .

[308]  Joaquim R. R. A. Martins,et al.  A data-based approach for fast airfoil analysis and optimization , 2018 .

[309]  Eric A. Deem,et al.  Adaptive separation control of a laminar boundary layer using online dynamic mode decomposition , 2020, Journal of Fluid Mechanics.

[310]  Benjamin Peherstorfer,et al.  Dynamic data-driven reduced-order models , 2015 .

[311]  Vassilios Theofilis,et al.  Modal Analysis of Fluid Flows: An Overview , 2017, 1702.01453.

[312]  W. Habashi,et al.  Multi-parameter analysis of aero-icing problems via proper orthogonal decomposition and multidimensional interpolation , 2013 .

[313]  Ionel M. Navon Data Assimilation for Numerical Weather Prediction: A Review , 2009 .

[314]  Earl H. Dowell,et al.  Three-Dimensional Transonic Aeroelasticity Using Proper Orthogonal Decomposition-Based Reduced-Order Models , 2001 .

[315]  Weiwei Zhang,et al.  Multi-kernel neural networks for nonlinear unsteady aerodynamic reduced-order modeling , 2017 .

[316]  Igor Mezic,et al.  Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control , 2016, Autom..

[317]  Weiwei Zhang,et al.  Effect of control surface on airfoil flutter in transonic flow , 2010 .

[318]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[319]  Christian Breitsamter,et al.  Neurofuzzy-Model-Based Unsteady Aerodynamic Computations Across Varying Freestream Conditions , 2016 .

[320]  Dynamic mode decomposition with exogenous input for data-driven modeling of unsteady flows , 2019, Physics of Fluids.

[321]  Weiwei Zhang,et al.  Multi-fidelity modeling framework for nonlinear unsteady aerodynamics of airfoils , 2019 .

[322]  Matthew F. Barone,et al.  Stable Galerkin reduced order models for linearized compressible flow , 2009, J. Comput. Phys..

[323]  Shun He,et al.  Nonlinear dynamics of an aeroelastic airfoil with free-play in transonic flow , 2017 .

[324]  P. Sagaut,et al.  Surrogate Modeling of Aerodynamic Simulations for Multiple Operating Conditions Using Machine Learning , 2018, AIAA Journal.

[325]  George Em Karniadakis,et al.  Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations , 2020, Science.

[326]  Zhike Peng,et al.  Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review , 2017 .

[327]  H. Babaee,et al.  A minimization principle for the description of modes associated with finite-time instabilities , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[328]  Alexander J. Smits Announcements, Comments, and Acknowledgments , 2017 .

[329]  Andy J. Keane,et al.  Wing Optimization Using Design of Experiment, Response Surface, and Data Fusion Methods , 2003 .

[330]  Omer San,et al.  Neural network closures for nonlinear model order reduction , 2017, Adv. Comput. Math..

[331]  Daniella E. Raveh,et al.  Numerical Study of Shock Buffet on Three-Dimensional Wings , 2015 .

[332]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[333]  Steven L. Brunton,et al.  Constrained sparse Galerkin regression , 2016, Journal of Fluid Mechanics.

[334]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[335]  B. R. Noack,et al.  A Finite-Time Thermodynamics of Unsteady Fluid Flows , 2008 .

[336]  Omer San,et al.  Data-driven recovery of hidden physics in reduced order modeling of fluid flows , 2020, Physics of Fluids.

[337]  Jeffrey P. Thomas,et al.  Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique , 2002 .

[338]  Haiyan Hu,et al.  Reduced-Order Modeling of Unsteady Aerodynamics for an Elastic Wing with Control Surfaces , 2017 .

[339]  Weiwei Zhang,et al.  A hybrid reduced-order framework for complex aeroelastic simulations , 2019, Aerospace Science and Technology.

[340]  E Raveh Daniella,et al.  Development of Unsteady Aerodynamic State-Space Models From CFD-Based Pulse Responses , 2001 .

[341]  Christian Breitsamter,et al.  Nonlinear identification via connected neural networks for unsteady aerodynamic analysis , 2018, Aerospace Science and Technology.

[342]  Pierre F. J. Lermusiaux,et al.  Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .

[343]  Zhonghua Han,et al.  Efficient Uncertainty Quantification using Gradient-Enhanced Kriging , 2009 .

[344]  James D. Baeder,et al.  Multi-Fidelity Coupled Trim Analysis of a Flapping-Wing Micro Air Vehicle Flight , 2017 .

[345]  Earl H. Dowell,et al.  Eigenmode analysis in unsteady aerodynamics - Reduced-order models , 1995 .

[346]  Peretz P. Friedmann,et al.  Application of a CFD-Based Surrogate Approach for Active Flow Control Modeling , 2019, AIAA Scitech 2019 Forum.

[347]  A. Mannarino,et al.  Nonlinear aeroelastic reduced order modeling by recurrent neural networks , 2014 .

[348]  Clarence W. Rowley,et al.  De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets , 2015, Theoretical and Computational Fluid Dynamics.

[349]  C. Williamson,et al.  Vortex-Induced Vibrations , 2004, Wind Effects on Structures.

[350]  Benjamin Peherstorfer,et al.  Geometric Subspace Updates with Applications to Online Adaptive Nonlinear Model Reduction , 2018, SIAM J. Matrix Anal. Appl..

[351]  George Em Karniadakis,et al.  A low-dimensional model for simulating three-dimensional cylinder flow , 2002, Journal of Fluid Mechanics.

[352]  Karthik Duraisamy,et al.  Machine Learning-augmented Predictive Modeling of Turbulent Separated Flows over Airfoils , 2016, ArXiv.

[353]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[354]  Steven L. Brunton,et al.  Compressive Sensing and Low-Rank Libraries for Classification of Bifurcation Regimes in Nonlinear Dynamical Systems , 2013, SIAM J. Appl. Dyn. Syst..

[355]  P. Beran,et al.  Reduced-order modeling: new approaches for computational physics , 2004 .

[356]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[357]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[358]  L. B. Schiff,et al.  Mathematical modeling of the aerodynamic characteristics in flight dynamics , 1984 .

[359]  Jinjun Wang,et al.  Initial growth of a disturbance in a boundary layer influenced by a circular cylinder wake , 2013, Journal of Fluid Mechanics.

[360]  Hua Li,et al.  Sensor and CFD data fusion for airflow field estimation , 2016 .

[361]  Karthik Duraisamy,et al.  Turbulence Modeling in the Age of Data , 2018, Annual Review of Fluid Mechanics.

[362]  Christian Oliver Paschereit,et al.  Spectral proper orthogonal decomposition , 2015, Journal of Fluid Mechanics.

[363]  Gareth A. Vio,et al.  A review of recent developments in the understanding of transonic shock buffet , 2017 .

[364]  Daiki Matsumoto,et al.  Online Dynamic Mode Decomposition Methods for the Investigation of Unsteady Aerodynamics of the DrivAer Model (First Report): Validation of DMD Methods for Surface Forces , 2018 .

[365]  Li Xiaohua,et al.  Efficient reduced-order modeling of unsteady aerodynamics under light dynamic stall conditions , 2019 .

[366]  In-Beum Lee,et al.  Nonlinear regression using RBFN with linear submodels , 2003 .

[367]  Jian Yu,et al.  Flowfield Reconstruction Method Using Artificial Neural Network , 2019, AIAA Journal.

[368]  Karthik Duraisamy,et al.  Sparsity-promoting algorithms for the discovery of informative Koopman-invariant subspaces , 2020, Journal of Fluid Mechanics.

[369]  T. Colonius,et al.  Modal decomposition of fluid–structure interaction with application to flag flapping , 2017, Journal of Fluids and Structures.

[370]  Clarence W. Rowley,et al.  Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses , 2012, J. Nonlinear Sci..

[371]  A. Lozano-Durán,et al.  Causality of energy-containing eddies in wall turbulence , 2019, Journal of Fluid Mechanics.

[372]  E. Buffoni Vortex shedding in subcritical conditions , 2003 .

[373]  Hao Yu,et al.  Advantages of Radial Basis Function Networks for Dynamic System Design , 2011, IEEE Transactions on Industrial Electronics.

[374]  Boo Cheong Khoo,et al.  Fast flow field prediction over airfoils using deep learning approach , 2019, Physics of Fluids.

[375]  Charbel Farhat,et al.  Stabilization of projection‐based reduced‐order models , 2012 .

[376]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[377]  David J. Lucia,et al.  Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory , 2003 .

[378]  Robert F. Stengel,et al.  Identification of aerodynamic coefficients using computational neural networks , 1993 .

[379]  Ziyi Wang,et al.  Benchmark aerodynamic shape optimization with the POD-based CST airfoil parametric method , 2019, Aerospace Science and Technology.

[380]  Taehyoun Kim,et al.  Frequency-Domain Karhunen -Loeve Method and Its Application to Linear Dynamic Systems , 1998 .

[381]  Yi Liu,et al.  Static aeroelastic analysis of very flexible wings based on non-planar vortex lattice method , 2013 .

[382]  Weiwei Zhang,et al.  Active control of transonic buffet flow , 2017, Journal of Fluid Mechanics.

[383]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[384]  Weiwei Zhang,et al.  Unsteady aerodynamic reduced-order modeling of an aeroelastic wing using arbitrary mode shapes , 2015 .

[385]  Wen-ming Zhang,et al.  Flutter Mode Transition of a Double-Main-Span Suspension Bridge in Full Aeroelastic Model Testing , 2014 .

[386]  Maenghyo Cho,et al.  Reduced-Order Model with an Artificial Neural Network for Aerostructural Design Optimization , 2013 .

[387]  Razvan Pascanu,et al.  On the difficulty of training recurrent neural networks , 2012, ICML.

[388]  Ionel M. Navon,et al.  An improved algorithm for the shallow water equations model reduction: Dynamic Mode Decomposition vs POD , 2015 .

[389]  Zhong Yi Wan,et al.  Machine learning the kinematics of spherical particles in fluid flows , 2018, Journal of Fluid Mechanics.

[390]  Mehdi Ghoreyshi,et al.  Accelerating the Numerical Generation of Aerodynamic Models for Flight Simulation , 2009 .

[391]  Weiwei Zhang,et al.  Transonic aeroelasticity: A new perspective from the fluid mode , 2020, 2001.04622.

[392]  Clarence W. Rowley,et al.  Data fusion via intrinsic dynamic variables: An application of data-driven Koopman spectral analysis , 2014, 1411.5424.

[393]  Heng Xiao,et al.  Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes simulations: A data-driven, physics-informed Bayesian approach , 2015, J. Comput. Phys..

[394]  Zhijun Yang,et al.  Nonlinear Reduced-Order Models for Transonic Aeroelastic and Aeroservoelastic Problems , 2018, AIAA Journal.

[395]  C. Farhat,et al.  Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .

[396]  Ken Badcock,et al.  On the generation of flight dynamics aerodynamic tables by computational fluid dynamics , 2011 .

[397]  ERIC DE STURLER,et al.  Nonlinear Parametric Inversion Using Interpolatory Model Reduction , 2013, SIAM J. Sci. Comput..

[398]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[399]  R. Haftka,et al.  Review of multi-fidelity models , 2016, Advances in Computational Science and Engineering.

[400]  B. R. Noack,et al.  On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body , 2013, Journal of Fluid Mechanics.

[401]  Steven L. Brunton,et al.  Sparse reduced-order modelling: sensor-based dynamics to full-state estimation , 2017, Journal of Fluid Mechanics.

[402]  Slawomir Koziel,et al.  Multi-fidelity design optimization of transonic airfoils using physics-based surrogate modeling and shape-preserving response prediction , 2010, J. Comput. Sci..

[403]  Yves Rolain,et al.  Fast approximate identification of nonlinear systems , 2003, Autom..

[404]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[405]  Alberto Broatch,et al.  Dynamic mode decomposition of the acoustic field in radial compressors , 2019, Aerospace Science and Technology.

[406]  Gianluigi Rozza,et al.  Data-Driven POD-Galerkin Reduced Order Model for Turbulent Flows , 2019, J. Comput. Phys..

[407]  C. K. Chan,et al.  Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN , 2011 .

[408]  Benjamin Peherstorfer,et al.  Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..

[409]  Clarence W. Rowley,et al.  A data-driven modeling framework for predicting forces and pressures on a rapidly pitching airfoil , 2015 .

[410]  Shervin Bagheri,et al.  Koopman-mode decomposition of the cylinder wake , 2013, Journal of Fluid Mechanics.

[411]  Peter J. Schmid,et al.  Recursive dynamic mode decomposition of transient and post-transient wake flows , 2016, Journal of Fluid Mechanics.

[412]  Mukund Balasubramanian,et al.  The Isomap Algorithm and Topological Stability , 2002, Science.

[413]  Peter J. Schmid,et al.  Parametrized data-driven decomposition for bifurcation analysis, with application to thermo-acoustically unstable systems , 2015 .

[414]  Christian Breitsamter,et al.  Efficient unsteady aerodynamic loads prediction based on nonlinear system identification and proper orthogonal decomposition , 2016 .

[415]  Jürgen Schmidhuber,et al.  LSTM: A Search Space Odyssey , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[416]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[417]  Earl H. Dowell,et al.  Reduced Order Nonlinear System Identification Methodology , 2006 .

[418]  B. R. Noack,et al.  9 From the POD-Galerkin method to sparse manifold models , 2020, Applications.

[419]  Weiwei Zhang,et al.  Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers , 2019, Nonlinear Dynamics.

[420]  Aimee S. Morgans,et al.  Feedback control of unstable flows: a direct modelling approach using the Eigensystem Realisation Algorithm , 2016, Journal of Fluid Mechanics.