Do Saliency Models Detect Odd-One-Out Targets? New Datasets and Evaluations

Recent advances in the field of saliency have concentrated on fixation prediction, with benchmarks reaching saturation. However, there is an extensive body of works in psychology and neuroscience that describe aspects of human visual attention that might not be adequately captured by current approaches. Here, we investigate singleton detection, which can be thought of as a canonical example of salience. We introduce two novel datasets, one with psychophysical patterns and one with natural odd-one-out stimuli. Using these datasets we demonstrate through extensive experimentation that nearly all saliency algorithms do not adequately respond to singleton targets in synthetic and natural images. Furthermore, we investigate the effect of training state-of-the-art CNN-based saliency models on these types of stimuli and conclude that the additional training data does not lead to a significant improvement of their ability to find odd-one-out targets.

[1]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[2]  Ali Borji,et al.  Quantitative Analysis of Human-Model Agreement in Visual Saliency Modeling: A Comparative Study , 2013, IEEE Transactions on Image Processing.

[3]  Lihi Zelnik-Manor,et al.  Context-Aware Saliency Detection , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Alejandro Lleras,et al.  Modeling the Effect of Selection History on Pop-Out Visual Search , 2014, PloS one.

[5]  Tim K Marks,et al.  SUN: A Bayesian framework for saliency using natural statistics. , 2008, Journal of vision.

[6]  J. Wolfe,et al.  Five factors that guide attention in visual search , 2017, Nature Human Behaviour.

[7]  U. Neisser VISUAL SEARCH. , 1964, Scientific American.

[8]  John K. Tsotsos Analyzing vision at the complexity level , 1990, Behavioral and Brain Sciences.

[9]  Stefanie I. Becker,et al.  The mechanism of priming: episodic retrieval or priming of pop-out? , 2008, Acta psychologica.

[10]  Frédo Durand,et al.  Learning to predict where humans look , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[11]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[12]  Stefanie I. Becker,et al.  Higher set sizes in pop-out search displays do not eliminate priming or enhance target selection , 2013, Vision Research.

[13]  John K. Tsotsos,et al.  On computational modeling of visual saliency: Examining what’s right, and what’s left , 2015, Vision Research.

[14]  Qi Zhao,et al.  SALICON: Saliency in Context , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  John K. Tsotsos,et al.  Saliency Based on Information Maximization , 2005, NIPS.

[16]  Antón García-Díaz,et al.  Saliency from hierarchical adaptation through decorrelation and variance normalization , 2012, Image Vis. Comput..

[17]  Ruth Rosenholtz,et al.  Do predictions of visual perception aid design? , 2011, TAP.

[18]  Jan Theeuwes,et al.  SEARCH FOR A CONJUNCTIVELY DEFINED TARGET CAN BE SELECTIVELY LIMITED TO A COLOR-DEFINED SUBSET OF ELEMENTS , 1995 .

[19]  Justus H. Piater,et al.  25 Years of CNNs: Can We Compare to Human Abstraction Capabilities? , 2016, ICANN.

[20]  Nicolas Riche,et al.  RARE2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis , 2013, Signal Process. Image Commun..

[21]  Ali Borji,et al.  CAT2000: A Large Scale Fixation Dataset for Boosting Saliency Research , 2015, ArXiv.

[22]  J. Wolfe,et al.  What attributes guide the deployment of visual attention and how do they do it? , 2004, Nature Reviews Neuroscience.

[23]  Qi Zhao,et al.  SALICON: Reducing the Semantic Gap in Saliency Prediction by Adapting Deep Neural Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[24]  Xavier Otazu,et al.  A Neurodynamic Model of Saliency Prediction in V1 , 2018, Neural Computation.

[25]  Neil D. B. Bruce,et al.  A Deeper Look at Saliency: Feature Contrast, Semantics, and Beyond , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Thomas Serre,et al.  Not-So-CLEVR: learning same–different relations strains feedforward neural networks , 2018, Interface Focus.

[27]  Stefanie I. Becker,et al.  The role of target-distractor relationships in guiding attention and the eyes in visual search. , 2010, Journal of experimental psychology. General.

[28]  Noel E. O'Connor,et al.  SalGAN: Visual Saliency Prediction with Generative Adversarial Networks , 2017, ArXiv.

[29]  Michael Dorr,et al.  Large-Scale Optimization of Hierarchical Features for Saliency Prediction in Natural Images , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Esa Rahtu,et al.  Fast and Efficient Saliency Detection Using Sparse Sampling and Kernel Density Estimation , 2011, SCIA.

[31]  Ralf van der Lans,et al.  Research Note - Competitive Brand Salience , 2008, Mark. Sci..

[32]  Matthias Bethge,et al.  Deep Gaze I: Boosting Saliency Prediction with Feature Maps Trained on ImageNet , 2014, ICLR.

[33]  Christopher Thomas OpenSalicon: An Open Source Implementation of the Salicon Saliency Model , 2016, ArXiv.

[34]  Peyman Milanfar,et al.  Static and space-time visual saliency detection by self-resemblance. , 2009, Journal of vision.

[35]  John K. Tsotsos,et al.  An Information Theoretic Model of Saliency and Visual Search , 2008, WAPCV.

[36]  Yoshua Bengio,et al.  Knowledge Matters: Importance of Prior Information for Optimization , 2013, J. Mach. Learn. Res..

[37]  Michael W. Spratling Predictive coding as a model of the V1 saliency map hypothesis , 2012, Neural Networks.

[38]  John K. Tsotsos,et al.  Attention based on information maximization , 2010 .

[39]  John K. Tsotsos,et al.  The Interaction of Target-Distractor Similarity and Visual Search Efficiency for Basic Features , 2017 .

[40]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[41]  John K. Tsotsos,et al.  Active Fixation Control to Predict Saccade Sequences , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[42]  Michel Wedel,et al.  Optimal Feature Advertising Design Under Competitive Clutter , 2007, Manag. Sci..

[43]  Shu Fang,et al.  Learning Discriminative Subspaces on Random Contrasts for Image Saliency Analysis , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[44]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[45]  John K. Tsotsos,et al.  SMILER: Saliency Model Implementation Library for Experimental Research , 2018, ArXiv.

[46]  J. Wolfe,et al.  What Can 1 Million Trials Tell Us About Visual Search? , 1998 .

[47]  Huchuan Lu,et al.  Saliency Detection via Graph-Based Manifold Ranking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Nuno Vasconcelos,et al.  On the plausibility of the discriminant center-surround hypothesis for visual saliency. , 2008, Journal of vision.

[49]  R. Rosenholtz A simple saliency model predicts a number of motion popout phenomena , 1999, Vision Research.

[50]  D. Broadbent Perception and communication , 1958 .

[51]  Leon A. Gatys,et al.  Understanding Low- and High-Level Contributions to Fixation Prediction , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[52]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[53]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[54]  Christof Koch,et al.  Image Signature: Highlighting Sparse Salient Regions , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  S. P. Arun,et al.  Turning visual search time on its head , 2012, Vision Research.

[56]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[57]  Stan Sclaroff,et al.  Saliency Detection: A Boolean Map Approach , 2013, 2013 IEEE International Conference on Computer Vision.

[58]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[59]  Matthias Bethge,et al.  DeepGaze II: Reading fixations from deep features trained on object recognition , 2016, ArXiv.

[60]  H. Müller,et al.  Salience-Based Selection: Attentional Capture by Distractors Less Salient Than the Target , 2013, PloS one.

[61]  Jianbing Shen,et al.  Deep Visual Attention Prediction. , 2018, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[62]  Rita Cucchiara,et al.  A deep multi-level network for saliency prediction , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[63]  Stefanie I. Becker,et al.  Simply shapely: Relative, not absolute shapes are primed in pop-out search , 2013, Attention, Perception, & Psychophysics.

[64]  Xose Manuel Pardo,et al.  Psychophysical evaluation of individual low-level feature influences on visual attention , 2018, Vision Research.

[65]  H. Müller,et al.  Stimulus Saliency Modulates Pre-Attentive Processing Speed in Human Visual Cortex , 2011, PloS one.

[66]  Christof Koch,et al.  Visual Saliency Computations: Mechanisms, Constraints, and the Effect of Feedback , 2010, The Journal of Neuroscience.

[67]  Aykut Erdem,et al.  Visual saliency estimation by nonlinearly integrating features using region covariances. , 2013, Journal of vision.

[68]  Erik Wästlund,et al.  Unsold is unseen … or is it? Examining the role of peripheral vision in the consumer choice process using eye-tracking methodology , 2018, Appetite.

[69]  Liqing Zhang,et al.  Dynamic visual attention: searching for coding length increments , 2008, NIPS.

[70]  John K. Tsotsos,et al.  Psychophysical Evaluation of Saliency Algorithms , 2016 .

[71]  Rita Cucchiara,et al.  Predicting Human Eye Fixations via an LSTM-Based Saliency Attentive Model , 2016, IEEE Transactions on Image Processing.