The saccadic spike artifact in MEG

Electro- and magnetoencephalography (EEG/MEG) are the means to investigate the dynamics of neuronal activity non-invasively in the human brain. However, both EEG and MEG are also sensitive to non-neural sources, which can severely complicate the interpretation. The saccadic spike potential (SP) at saccade onset has been identified as a particularly problematic artifact in EEG because it closely resembles synchronous neuronal gamma band activity. While the SP and its confounding effects on EEG have been thoroughly characterized, the corresponding artifact in MEG, the saccadic spike field (SF), has not been investigated. Here we provide a detailed characterization of the SF. We simultaneously recorded MEG, EEG, gaze position and electrooculogram (EOG). We compared the SF in MEG for different saccade sizes and directions and contrasted it with the well-known SP in EEG. Our results reveal a saccade amplitude and direction dependent, lateralized saccadic spike artifact, which was most prominent in the gamma frequency range. The SF was strongest at frontal and temporal sensors but unlike the SP in EEG did not contaminate parietal sensors. Furthermore, we observed that the source configurations of the SF were comparable for regular and miniature saccades. Using distributed source analysis we identified the sources of the SF in the extraocular muscles. In summary, our results show that the SF in MEG closely resembles neuronal activity in frontal and temporal sensors. Our detailed characterization of the SF constitutes a solid basis for assessing possible saccadic spike related contamination in MEG experiments.

[1]  Ralf Engbert,et al.  Microsaccade Orientation Supports Attentional Enhancement Opposite a Peripheral Cue: Commentary on Tse, Sheinberg, and Logothetis (2003) , 2004, Psychological science.

[2]  H. R. Doig,et al.  Effect of saccade size on presaccadic spike potential amplitude. , 1989, Investigative ophthalmology & visual science.

[3]  Diane Kurtzberg,et al.  Topographic analysis of human cortical potentials preceding self-initiated and visually triggered saccades , 1982, Brain Research.

[4]  Gergely Csibra,et al.  Attention and oculomotor control: A high-density ERP study of the gap effect , 1997, Neuropsychologia.

[5]  Xoana G. Troncoso,et al.  Microsaccades drive illusory motion in the Enigma illusion , 2008, Proceedings of the National Academy of Sciences.

[6]  Siegel Markus,et al.  Oscillatory synchronization in large-scale cortical networks predicts perception , 2011 .

[7]  Eyal M. Reingold,et al.  Saccadic Inhibition in Voluntary and Reflexive Saccades , 2002, Journal of Cognitive Neuroscience.

[8]  Carey D. Balaban,et al.  The human pre-saccadic spike potential: Influences of a visual target, saccade direction, electrode laterality and instructions to perform saccades , 1985, Brain Research.

[9]  Richard V Abadi,et al.  Paying attention to saccadic intrusions. , 2005, Brain research. Cognitive brain research.

[10]  R. Kliegl,et al.  Human Microsaccade-Related Visual Brain Responses , 2009, The Journal of Neuroscience.

[11]  Matthew J. Brookes,et al.  Beamformer reconstruction of correlated sources using a modified source model , 2007, NeuroImage.

[12]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[13]  Shlomit Yuval-Greenberg,et al.  Scalp-Recorded Induced Gamma-Band Responses to Auditory Stimulation and Its Correlations with Saccadic Muscle-Activity , 2011, Brain Topography.

[14]  Thomas R Knösche,et al.  Tangential derivative mapping of axial MEG applied to event-related desynchronization research , 2000, Clinical Neurophysiology.

[15]  Moritz Grosse-Wentrup,et al.  Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI , 2011, Comput. Intell. Neurosci..

[16]  Hansjoerg E. Kolder,et al.  Visual Psychophysics and Physiology , 1979 .

[17]  Christopher K. Kovach,et al.  Manifestation of ocular-muscle EMG contamination in human intracranial recordings , 2011, NeuroImage.

[18]  Ralf Engbert,et al.  When do microsaccades follow spatial attention? , 2010, Attention, perception & psychophysics.

[19]  J Gross,et al.  REPRINTS , 1962, The Lancet.

[20]  G. Nolte The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. , 2003, Physics in medicine and biology.

[21]  C. Shagass,et al.  Presaccadic spike potential in normal subjects , 1997 .

[22]  Richard J. Davidson,et al.  Identifying robust and sensitive frequency bands for interrogating neural oscillations , 2010, NeuroImage.

[23]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[24]  F Jagla,et al.  Saccadic eye movement related potentials. , 2007, Physiological research.

[25]  Xoana G. Troncoso,et al.  Microsaccades: a neurophysiological analysis , 2009, Trends in Neurosciences.

[26]  J. Nottage,et al.  Uncovering Gamma in Visual Tasks , 2010, Brain Topography.

[27]  David J. Schwartzman,et al.  In the blink of an eye: the contribution of microsaccadic activity to the induced γ band response. , 2011, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[28]  Wolfgang Becker,et al.  Bereitschaftspotential, prämotorische Positivierung und andere Hirnpotentiale bei sakkadischen Augenbewegungen , 1972 .

[29]  John J. B. Allen,et al.  EEG phase synchrony differences across visual perception conditions may depend on recording and analysis methods , 2005, Clinical Neurophysiology.

[30]  F. Riemslag,et al.  On the origin of the presaccadic spike potential. , 1988, Electroencephalography and clinical neurophysiology.

[31]  Ralf Engbert,et al.  Microsaccades uncover the orientation of covert attention , 2003, Vision Research.

[32]  R. Miall,et al.  Modulation of saccadic intrusions by exogenous and endogenous attention , 2007, Brain Research.

[33]  Nelson J. Trujillo-Barreto,et al.  Induced gamma band responses in human EEG after the control of miniature saccadic artifacts , 2011, NeuroImage.

[34]  Kensuke Sekihara,et al.  Modified beamformers for coherent source region suppression , 2006, IEEE Transactions on Biomedical Engineering.

[35]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[36]  Joseph H. Goldberg,et al.  Identifying fixations and saccades in eye-tracking protocols , 2000, ETRA.

[37]  L. Dam,et al.  Retinal image shifts, but not eye movements per se, cause alternations in awareness during binocular rivalry , 2006 .

[38]  Mark H. Johnson,et al.  Cortical development and saccade planning: The ontogeny of the spike potential , 2000, Neuroreport.

[39]  G. Thickbroom,et al.  Presaccadic spike potential. Relation to eye movement direction. , 1986, Electroencephalography and clinical neurophysiology.

[40]  M. Turatto,et al.  Visual oddballs induce prolonged microsaccadic inhibition , 2007, Experimental Brain Research.

[41]  C Boylan,et al.  Presaccadic spike potential with congenital lateral rectus palsy. , 1989, Electroencephalography and clinical neurophysiology.

[42]  Ralf Engbert,et al.  Toward a model of microsaccade generation: the case of microsaccadic inhibition. , 2008, Journal of vision.

[43]  G. Goldberg,et al.  Topography of scalp potentials preceding self‐initiated saccades , 1990, Neurology.

[44]  Ralf Engbert Microsaccades: A microcosm for research on oculomotor control, attention, and visual perception. , 2006, Progress in brain research.

[45]  Reinhold Kliegl,et al.  Microsaccadic inhibition and P300 enhancement in a visual oddball task. , 2009, Psychophysiology.

[46]  Alan C. Evans,et al.  Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.

[47]  John C. Armington,et al.  29 – Potentials That Precede Small Saccades1 , 1978 .

[48]  Philippe Kahane,et al.  Saccade Related Gamma-Band Activity in Intracerebral EEG: Dissociating Neural from Ocular Muscle Activity , 2009, Brain Topography.

[49]  Terence W. Picton,et al.  Blinks, Saccades, Extraocular Muscles and Visual Evoked Potentials (Reply to Verleger) , 2000 .

[50]  G. Thickbroom,et al.  Presaccadic ‘spike’ potential: Investigation of topography and source , 1985, Brain Research.

[51]  M. Rolfs Microsaccades: Small steps on a long way , 2009, Vision Research.

[52]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[53]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[54]  K. A. Blinn Focal anterior temporal spikes from external rectus muscle. , 1955, Electroencephalography and clinical neurophysiology.

[55]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[56]  I. Nelken,et al.  Transient Induced Gamma-Band Response in EEG as a Manifestation of Miniature Saccades , 2008, Neuron.

[57]  Ralf Engbert,et al.  Fixational eye movements predict the perceived direction of ambiguous apparent motion. , 2008, Journal of vision.

[58]  N V Reva,et al.  The coincidence between late non-phase-locked gamma synchronization response and saccadic eye movements. , 2004, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[59]  P. Corballis,et al.  Electrophysiological correlates of presaccadic remapping in humans. , 2008, Psychophysiology.

[60]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[61]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[62]  Ralf Engbert,et al.  Microsaccade dynamics during covert attention , 2005, Vision Research.

[63]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[64]  Luigi Tamè,et al.  Microsaccades distinguish between global and local visual processing , 2007, Neuroreport.

[65]  Matti S. Hämäläinen,et al.  Functional localization based on measurements with a whole-head magnetometer system , 2005, Brain Topography.

[66]  G. Thickbroom,et al.  Presaccadic spike potential: a computer model based upon motor unit recruitment patterns in the extraocular muscles , 1987, Brain Research.

[67]  S. Martinez-Conde Fixational eye movements in normal and pathological vision. , 2006, Progress in brain research.

[68]  R. Oostenveld,et al.  Finding Gamma , 2008, Neuron.

[69]  G. Adler,et al.  A frontal cortical potential associated with saccades in humans , 2004, Experimental Brain Research.

[70]  Shlomit Yuval-Greenberg,et al.  Saccadic spike potentials in gamma-band EEG: Characterization, detection and suppression , 2010, NeuroImage.