Sublinear extensions of polygons

Every convex polygon with $n$ vertices is a linear projection of a higher-dimensional polytope with at most $147\,n^{2/3}$ facets.

[1]  Sebastian Pokutta,et al.  On the existence of 0/1 polytopes with high semidefinite extension complexity , 2013, Math. Program..

[2]  Matthew M Lin,et al.  On the Nonnegative Rank of Euclidean Distance Matrices. , 2010, Linear algebra and its applications.

[3]  Peter J. Haas,et al.  Large-scale matrix factorization with distributed stochastic gradient descent , 2011, KDD.

[4]  V. Kaibel Extended Formulations in Combinatorial Optimization , 2011, 1104.1023.

[5]  Hans Raj Tiwary,et al.  On the extension complexity of combinatorial polytopes , 2013, Math. Program..

[6]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[7]  Nicolas Gillis,et al.  The Why and How of Nonnegative Matrix Factorization , 2014, ArXiv.

[8]  Rekha R. Thomas,et al.  Lifts of Convex Sets and Cone Factorizations , 2011, Math. Oper. Res..

[9]  Pavel Hrubes,et al.  On the nonnegative rank of distance matrices , 2012, Inf. Process. Lett..

[10]  Hans Raj Tiwary,et al.  Extended Formulations for Polygons , 2011, Discret. Comput. Geom..

[11]  Sebastian Pokutta,et al.  A note on the extension complexity of the knapsack polytope , 2013, Oper. Res. Lett..

[12]  Julian Pfeifle,et al.  Polygons as Sections of Higher-Dimensional Polytopes , 2014, Electron. J. Comb..

[13]  Volker Kaibel,et al.  Extended Formulations for Packing and Partitioning Orbitopes , 2008, Math. Oper. Res..

[14]  Rekha R. Thomas,et al.  Positive semidefinite rank , 2014, Math. Program..

[15]  Nicolas Gillis,et al.  On the Linear Extension Complexity of Regular n-gons , 2015, ArXiv.

[16]  Arkadi Nemirovski,et al.  On Polyhedral Approximations of the Second-Order Cone , 2001, Math. Oper. Res..

[17]  Nicolas Gillis,et al.  On the Geometric Interpretation of the Nonnegative Rank , 2010, 1009.0880.

[18]  Bernd Sturmfels,et al.  FIXED POINTS OF THE EM ALGORITHM AND NONNEGATIVE RANK BOUNDARIES , 2013, 1312.5634.

[19]  LeRoy B. Beasley,et al.  Real rank versus nonnegative rank , 2009 .

[20]  Rekha R. Thomas,et al.  Polytopes of Minimum Positive Semidefinite Rank , 2012, Discret. Comput. Geom..

[21]  Volker Kaibel,et al.  A Short Proof that the Extension Complexity of the Correlation Polytope Grows Exponentially , 2013, Discret. Comput. Geom..

[22]  Mihalis Yannakakis,et al.  Expressing combinatorial optimization problems by linear programs , 1991, STOC '88.

[23]  Suresh Venkatasubramanian Computational geometry column 55: new developments in nonnegative matrix factorization , 2013, SIGA.

[24]  Sebastian Pokutta,et al.  The Matching Problem Has No Fully Polynomial Size Linear Programming Relaxation Schemes , 2015, IEEE Transactions on Information Theory.

[25]  Samuel Fiorini,et al.  Combinatorial bounds on nonnegative rank and extended formulations , 2011, Discret. Math..

[26]  Michel X. Goemans,et al.  Smallest compact formulation for the permutahedron , 2015, Math. Program..

[27]  Stephen A. Vavasis,et al.  On the Complexity of Nonnegative Matrix Factorization , 2007, SIAM J. Optim..

[28]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[29]  Sebastian Pokutta,et al.  Common Information and Unique Disjointness , 2013, FOCS.

[30]  Yaroslav Shitov Tropical lower bounds for extended formulations , 2015, Math. Program..

[31]  Thomas Rothvoß,et al.  Some 0/1 polytopes need exponential size extended formulations , 2011, Math. Program..

[32]  Rekha R. Thomas,et al.  Worst-case results for positive semidefinite rank , 2013, Mathematical Programming.

[33]  Yaroslav Shitov An upper bound for nonnegative rank , 2014, J. Comb. Theory, Ser. A.

[34]  Kanstantsin Pashkovich,et al.  Hidden vertices in extensions of polytopes , 2015, Oper. Res. Lett..

[35]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[36]  Nicolas Gillis,et al.  Heuristics for exact nonnegative matrix factorization , 2014, J. Glob. Optim..