A visual feedback-based time-optimal motion policy for capturing an unpredictable evader

In this paper, we address the pursuit–evasion problem of capturing an unpredictable omnidirectional evader using a differential drive robot (DDR) in an obstacle-free environment. We present three main contributions. (1) We provide a state feedback-based time-optimal motion policy for the DDR. The motion policy is based on a partition of the state space. One main contribution of this paper is to provide algebraic equations of the regions’ boundaries of this partition in terms of the state-space coordinates. (2) We estimate the state of the evader based on images using the one-dimensional trifocal tensor. We propose a new formulation of the estimation of the evader's state relative to the pursuer. (3) We present a bound, for conventional cameras, over the pursuer's field of view that guarantees that, if the evader is initially visible, it will remain visible (inside the camera's view) regardless of its motion strategy, until the capture condition is achieved. We also present an implementation of the pursuer's motion policy, the estimation of the evader's state and also present simulation results of the pursuit/evasion game.

[1]  Marcelo H. Ang,et al.  Motion Planning for 3-D Target Tracking among Obstacles , 2007, ISRR.

[2]  Rafael Murrieta-Cid,et al.  Time-Optimal Motion Strategies for Capturing an Omnidirectional Evader Using a Differential Drive Robot , 2013, IEEE Transactions on Robotics.

[3]  Vijay Kumar,et al.  Visibility-based deployment of robot formations for communication maintenance , 2011, 2011 IEEE International Conference on Robotics and Automation.

[4]  Stephen G. Kobourov,et al.  Optimal strategies to track and capture a predictable target , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[5]  Wei Yang,et al.  Robotic Routers: Algorithms and Implementation , 2009, Int. J. Robotics Res..

[6]  Carlos Sagüés,et al.  Exploiting the Trifocal Tensor in Dynamic Pose Estimation for Visual Control , 2013, IEEE Transactions on Control Systems Technology.

[7]  Antony W Merz,et al.  The Homicidal Chauffeur - A Differential Game , 1971 .

[8]  Steven M. LaValle,et al.  Visibility-based Pursuit—Evasion with Bounded Speed , 2008, Int. J. Robotics Res..

[9]  T. Başar,et al.  Dynamic Noncooperative Game Theory, 2nd Edition , 1998 .

[10]  Nicholas R. Gans,et al.  Homography-Based Control Scheme for Mobile Robots With Nonholonomic and Field-of-View Constraints , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[11]  Alejandro Sarmiento,et al.  Surveillance Strategies for a Pursuer with Finite Sensor Range , 2007, Int. J. Robotics Res..

[12]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[13]  Volkan Isler,et al.  Capturing an Evader in a Polygonal Environment with Obstacles , 2011, IJCAI.

[14]  Lynne E. Parker,et al.  Distributed Algorithms for Multi-Robot Observation of Multiple Moving Targets , 2002, Auton. Robots.

[15]  Olivier D. Faugeras,et al.  Self-Calibration of a 1D Projective Camera and Its Application to the Self-Calibration of a 2D Projective Camera , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Leonidas J. Guibas,et al.  Visibility-Based Pursuit-Evasion in a Polygonal Environment , 1997, WADS.

[17]  Sourabh Bhattacharya,et al.  On the Existence of Nash Equilibrium for a Two-player Pursuit - Evasion Game with Visibility Constraints , 2008, Int. J. Robotics Res..

[18]  Jason M. O'Kane,et al.  On the Value of Ignorance: Balancing Tracking and Privacy Using a Two-Bit Sensor , 2008, WAFR.

[19]  Sourabh Bhattacharya,et al.  On the Existence of Nash Equilibrium for a Two-player Pursuit—Evasion Game with Visibility Constraints , 2010 .

[20]  S. Shankar Sastry,et al.  Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation , 2002, IEEE Trans. Robotics Autom..

[21]  Sourabh Bhattacharya,et al.  A cell decomposition approach to visibility-based pursuit evasion among obstacles , 2011, Int. J. Robotics Res..

[22]  Huifang Wang,et al.  A Geometric Algorithm to Compute Time-Optimal Trajectories for a Bidirectional Steered Robot , 2009, IEEE Transactions on Robotics.

[23]  Kostas Daniilidis,et al.  A Unifying Theory for Central Panoramic Systems and Practical Applications , 2000, ECCV.

[24]  P. Souéres,et al.  Shortest paths synthesis for a car-like robot , 1996, IEEE Trans. Autom. Control..

[25]  Seth Hutchinson,et al.  Visual Servo Control Part I: Basic Approaches , 2006 .

[26]  Jingtao Shi,et al.  Relationship between maximum principle and dynamic programming for stochastic differential games of jump diffusions , 2014, Int. J. Control.

[27]  Devin J. Balkcom,et al.  Time Optimal Trajectories for Bounded Velocity Differential Drive Vehicles , 2002, Int. J. Robotics Res..

[28]  Héctor H. González-Baños,et al.  Motion strategies for maintaining visibility of a moving target , 1997, Proceedings of International Conference on Robotics and Automation.

[29]  Geoffrey A. Hollinger,et al.  Efficient Multi-robot Search for a Moving Target , 2009, Int. J. Robotics Res..

[30]  Alon Efrat Héctor H. González-Baños Stephen G. Kobourov Palaniappan Optimal Motion Strategies to Track and Capture a Predictable Target , .

[31]  Geoffrey A. Hollinger,et al.  Search and pursuit-evasion in mobile robotics , 2011, Auton. Robots.

[32]  Leonidas J. Guibas,et al.  A Visibility-Based Pursuit-Evasion Problem , 1999, Int. J. Comput. Geom. Appl..

[33]  Timothy H. Chung On Probabilistic Search Decisions under Searcher Motion Constraints , 2008, WAFR.

[34]  Ana Cristina Murillo,et al.  Localization and Matching Using the Planar Trifocal Tensor With Bearing-Only Data , 2008, IEEE Transactions on Robotics.

[35]  Gaurav S. Sukhatme,et al.  Tracking Targets Using Multiple Robots: The Effect of Environment Occlusion , 2002, Auton. Robots.

[36]  P. Varaiya,et al.  Differential games , 1971 .

[37]  Sampath Kannan,et al.  Randomized pursuit-evasion in a polygonal environment , 2005, IEEE Transactions on Robotics.