Optimum spatiotemporal receptive fields for vision in dim light.

Many nocturnal insects depend on vision for daily life and have evolved different strategies to improve their visual capabilities in dim light. Neural summation of visual signals is one strategy to improve visual performance, and this is likely to be especially important for insects with apposition compound eyes. Here we develop a model to determine the optimum spatiotemporal sampling of natural scenes at gradually decreasing light levels. Image anisotropy has a strong influence on the receptive field properties predicted to be optimal at low light intensities. Spatial summation between visual channels is predicted to extend more strongly in the direction with higher correlations between the input signals. Increased spatiotemporal summation increases signal-to-noise ratio at low frequencies but sacrifices signal-to-noise ratio at higher frequencies. These results, while obtained from a model of the insect visual system, are likely to apply to visual systems in general.

[1]  Eric J. Warrant,et al.  Visual Reliability and Information Rate in the Retina of a Nocturnal Bee , 2008, Current Biology.

[2]  A. Dickson On Evolution , 1884, Science.

[3]  Eric J. Warrant,et al.  A neural network to improve dim-light vision? Dendritic fields of first-order interneurons in the nocturnal bee Megalopta genalis , 2005, Cell and Tissue Research.

[4]  J. Howard,et al.  Response of an insect photoreceptor: a simple log-normal model , 1981, Nature.

[5]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[6]  E. Warrant Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation , 1999, Vision Research.

[7]  A. Rose,et al.  The Relative Sensitivities of Television Pickup Tubes, Photographic Film, and the Human Eye , 1942, Proceedings of the IRE.

[8]  Birgit Greiner,et al.  Adaptations for nocturnal vision in insect apposition eyes. , 2006, International review of cytology.

[9]  Eric J. Warrant,et al.  Nocturnal Vision and Landmark Orientation in a Tropical Halictid Bee , 2004, Current Biology.

[10]  M. Wiener,et al.  Animal eyes. , 1957, The American orthoptic journal.

[11]  Eric J. Warrant,et al.  Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis , 2004, Cell and Tissue Research.

[12]  Eric J. Warrant,et al.  Neural Image Enhancement Allows Honeybees to See at Night , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[13]  S. Bloomfield Orientation-sensitive amacrine and ganglion cells in the rabbit retina. , 1994, Journal of neurophysiology.

[14]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[15]  R Batra,et al.  Efferent control of temporal response properties of the Limulus lateral eye , 1990, The Journal of general physiology.

[16]  J. H. van Hateren,et al.  Modelling the Power Spectra of Natural Images: Statistics and Information , 1996, Vision Research.

[17]  Michael F. Land,et al.  Optics and Vision in Invertebrates , 1981 .

[18]  J. Atick,et al.  STATISTICS OF NATURAL TIME-VARYING IMAGES , 1995 .

[19]  E. Warrant,et al.  Visual sensitivity in the crepuscular owl butterfly Caligo memnon and the diurnal blue morpho Morpho peleides: a clue to explain the evolution of nocturnal apposition eyes? , 2008, Journal of Experimental Biology.

[20]  J. H. van Hateren,et al.  Real and optimal neural images in early vision , 1992, Nature.

[21]  E. Kaplan,et al.  Circadian Rhythms in Limulus Photoreceptors , 2003 .

[22]  R.R. de Ruyter Van Steveninck,et al.  Statistical adaptation and optimal estimation in movement computation by the blowfly visual system , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[23]  P. Sterling,et al.  "Collective coding" of correlated cone signals in the retinal ganglion cell. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Charles P. Ratliff,et al.  Design of a Neuronal Array , 2008, The Journal of Neuroscience.

[25]  Victor H. Gonzalez,et al.  The evolution of nocturnal behaviour in sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae): an escape from competitors and enemies? , 2004 .

[26]  D. Baylor,et al.  Mosaic arrangement of ganglion cell receptive fields in rabbit retina. , 1997, Journal of neurophysiology.

[27]  J. H. van Hateren,et al.  A theory of maximizing sensory information , 2004, Biological Cybernetics.

[28]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  H. Vries The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye , 1943 .

[30]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[31]  E Kaplan,et al.  Circadian rhythms in Limulus photoreceptors. I. Intracellular studies , 1987, The Journal of general physiology.

[32]  Gary D. Bernard,et al.  The effect of motion on visual acuity of the compound eye: A theoretical analysis , 1975, Vision Research.

[33]  C. J. McGrath,et al.  Effect of exchange rate return on volatility spill-over across trading regions , 2012 .

[34]  R. G. Smith,et al.  Simulation of an anatomically defined local circuit: The cone-horizontal cell network in cat retina , 1995, Visual Neuroscience.

[35]  A. Hendrickson,et al.  Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina) , 1989, The Journal of comparative neurology.

[36]  J. V. van Hateren,et al.  Real and optimal neural images in early vision , 1992, Nature.

[37]  R. Jander,et al.  Allometry and resolution of bee eyes (Apoidea). , 2002, Arthropod structure & development.

[38]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[39]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[40]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[41]  J. H. Hateren,et al.  Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation , 1992, Journal of Comparative Physiology A.

[42]  Edward A Essock,et al.  A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes. , 2004, Journal of vision.

[43]  Eric J Warrant,et al.  Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps , 2008, Journal of Experimental Biology.

[44]  H. Barlow,et al.  Change of organization in the receptive fields of the cat's retina during dark adaptation , 1957, The Journal of physiology.

[45]  H. K. Hartline,et al.  INHIBITION IN THE EYE OF LIMULUS , 1956, The Journal of general physiology.

[46]  A. Dubs,et al.  The dynamics of phototransduction in insects , 1984, Journal of Comparative Physiology A.

[47]  Jonathon Howard,et al.  Temporal resolving power of the photoreceptors ofLocusta migratoria , 1981, Journal of comparative physiology.

[48]  D. Roubik,et al.  Ecology and natural history of tropical bees: Extant families, subfamilies, tribes, genera, and subgenera of the Apoidea: a partial checklist , 1989 .

[49]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[50]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[51]  A. Snyder Physics of Vision in Compound Eyes , 1979 .

[52]  Kuno Kirschfeld,et al.  The Absolute Sensitivity of Lens and Compound Eyes , 1974, Zeitschrift fur Naturforschung. Section C, Biosciences.

[53]  Eric J. Warrant,et al.  Visual summation in night-flying sweat bees: A theoretical study , 2006, Vision Research.

[54]  Dan-Eric Nilsson,et al.  Optics and Evolution of the Compound Eye , 1989 .

[55]  K. Donner,et al.  Noise-equivalent and signal-equivalent visual summation of quantal events in space and time , 1998, Visual Neuroscience.

[56]  A S French,et al.  Visual acuity for moving objects in first- and second-order neurons of the fly compound eye. , 1997, Journal of neurophysiology.

[57]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[58]  M. Land Visual acuity in insects. , 1997, Annual review of entomology.

[59]  S. Laughlin Matching coding, circuits, cells, and molecules to signals: General principles of retinal design in the fly's eye , 1994, Progress in Retinal and Eye Research.

[60]  Robert B. Barlow,et al.  The American Horseshoe Crab , 2004 .

[61]  M. F. Land,et al.  Maps of the acute zones of fly eyes , 1985, Journal of Comparative Physiology A.

[62]  N. Grzywacz,et al.  Power spectra and distribution of contrasts of natural images from different habitats , 2003, Vision Research.

[63]  Eric J. Warrant,et al.  Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis , 2004, Cell and Tissue Research.

[64]  RETINA , 1965 .

[65]  S. Laughlin,et al.  Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding , 2007, PLoS biology.

[66]  D Purves,et al.  The distribution of oriented contours in the real world. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[67]  S J Bolanowski,et al.  Efferent optic nerve fibers mediate circadian rhythms in the Limulus eye. , 1977, Science.

[68]  Eric Warrant,et al.  Vision in the dimmest habitats on Earth , 2004, Journal of Comparative Physiology A.