Observation and integrated Earth-system science: A roadmap for 2016–2025

This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016–2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the representations of processes that are already incorporated or through adding new processes or components, are discussed. Some important elements of Earth-system models are considered more fully. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Inverse methods for surface-flux or model-parameter estimation are also covered. Reviews are given of the way observations and the processed datasets based on them are used for evaluating models, and of the combined use of observations and models for monitoring and interpreting the behaviour of the Earth system and for predicting and projecting its future. A set of concluding discussions covers general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international co-operation.

[1]  W. Collins,et al.  Evaluation of climate models , 2013 .

[2]  Shian-Jiann Lin,et al.  Ocean Warming Effect on Surface Gravity Wave Climate Change for the End of the Twenty-First Century , 2013 .

[3]  Ernesto Lopez-Baeza,et al.  Estimation of surface runoff in the Jucar river basin from rainfall data and SMOS soil moisture , 2013 .

[4]  Tim Palmer,et al.  The prospects for seasonal forecasting—A review paper , 1994 .

[5]  Saleh Abdalla,et al.  How robust is the recent strengthening of the Tropical Pacific trade winds? , 2014 .

[6]  A. Robock,et al.  The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements , 2011 .

[7]  T. Shepherd,et al.  Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record , 2014 .

[8]  James A. Carton,et al.  Sea level in ocean reanalyses and tide gauges , 2014 .

[9]  E. Hawkins,et al.  The Potential to Narrow Uncertainty in Regional Climate Predictions , 2009 .

[10]  Peter Weston,et al.  The impact of the temporal spacing of observations on analysis errors in an idealised data assimilation system , 2014 .

[11]  Kevin E. Trenberth,et al.  Regional Energy and Water Cycles: Transports from Ocean to Land , 2013 .

[12]  Maurice Borgeaud,et al.  ESA's Earth Explorer scientific missions , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[13]  M. Clark,et al.  Operational hydrological data assimilation with the recursive ensemble Kalman filter , 2013 .

[14]  John Derber,et al.  The Use of TOVS Cloud-Cleared Radiances in the NCEP SSI Analysis System , 1998 .

[15]  D. E. Harrison,et al.  Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update) , 2010 .

[16]  Arun Kumar,et al.  A Comparative Analysis of Upper-Ocean Heat Content Variability from an Ensemble of Operational Ocean Reanalyses , 2012 .

[17]  H. Madsen,et al.  Assimilation of SMOS‐derived soil moisture in a fully integrated hydrological and soil‐vegetation‐atmosphere transfer model in Western Denmark , 2014 .

[18]  Béatrice Josse,et al.  Tropospheric chemistry in the integrated forecasting system of ECMWF , 2014 .

[19]  Joyce E. Penner,et al.  Global modeling of SOA: the use of different mechanisms for aqueous-phase formation , 2013 .

[20]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[21]  Jessica Blunden,et al.  State of the climate in 2013 , 2014 .

[22]  Johannes Quaas,et al.  Model intercomparison of indirect aerosol effects , 2006 .

[23]  J. Lamarque,et al.  Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data , 2009 .

[24]  A. P. Siebesma,et al.  Clouds, circulation and climate sensitivity , 2015 .

[25]  M. Razinger,et al.  Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power , 2011 .

[26]  R. Giering,et al.  The BETHY/JSBACH Carbon Cycle Data Assimilation System: experiences and challenges , 2013 .

[27]  Paul Poli,et al.  Arctic warming in ERA‐Interim and other analyses , 2015 .

[28]  Franco Marenco,et al.  Performance assessment of a volcanic ash transport model mini-ensemble used for inverse modeling of the 2010 Eyjafjallajökull eruption , 2012 .

[29]  C. Jakob Accelerating progress in global atmospheric model development through improved parameterizations: challenges, opportunities, and strategies , 2010 .

[30]  Fangqun Yu,et al.  Ion‐mediated nucleation in the atmosphere: Key controlling parameters, implications, and look‐up table , 2010 .

[31]  K. Trenberth,et al.  The changing character of precipitation , 2003 .

[32]  Ali Behrangi,et al.  An Update on the Oceanic Precipitation Rate and Its Zonal Distribution in Light of Advanced Observations from Space , 2014 .

[33]  S. Seneviratne,et al.  Recent decline in the global land evapotranspiration trend due to limited moisture supply , 2010, Nature.

[34]  Arthur Vidard,et al.  A multivariate treatment of bias for sequential data assimilation: Application to the tropical oceans , 2007 .

[35]  Veronika Eyring,et al.  Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2013 .

[36]  Taro Takahashi,et al.  Changes in deep-water CO2 concentrations over the last several decades determined from discrete pCO2measurements , 2013 .

[37]  P. Jones,et al.  The Twentieth Century Reanalysis Project , 2009 .

[38]  D. Dee,et al.  Variational bias correction of satellite radiance data in the ERA‐Interim reanalysis , 2009 .

[39]  Gregory C. Johnson,et al.  Correction to “Recent cooling of the upper ocean” , 2007 .

[40]  Patrick D. Nunn,et al.  Sea Level Change , 2013 .

[41]  K. Trenberth,et al.  Estimates of Meridional Atmosphere and Ocean Heat Transports , 2001 .

[42]  D. G. H. Tan,et al.  Reference Upper-Air Observations for Climate: From Concept to Reality , 2016 .

[43]  James Hansen,et al.  Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction , 2013 .

[44]  K. Trenberth Changes in precipitation with climate change , 2011 .

[45]  A. Hall,et al.  Projecting regional change , 2014, Science.

[46]  Ke Zhang,et al.  Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth , 2012 .

[47]  S. Manabe,et al.  A Global Ocean-Atmosphere Climate Model. Part I. The Atmospheric Circulation , 1975 .

[48]  Paul Poli,et al.  Estimating low‐frequency variability and trends in atmospheric temperature using ERA‐Interim , 2014 .

[49]  L. Chapman,et al.  The Birmingham Urban Climate Laboratory: an open meteorological test bed and challenges of the smart city , 2015 .

[50]  Nancy Nichols,et al.  Assimilation of data into an ocean model with systematic errors near the equator , 2004 .

[51]  S. Bony,et al.  Spread in model climate sensitivity traced to atmospheric convective mixing , 2014, Nature.

[52]  Konrad Schindler,et al.  High-quality observation of surface imperviousness for urban runoff modelling using UAV imagery , 2015 .

[53]  S. Manabe,et al.  The Effects of Doubling the CO2 Concentration on the climate of a General Circulation Model , 1975 .

[54]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[55]  Ted Miles,et al.  Volcano Monitoring with small Unmanned Aerial Systems , 2012, Infotech@Aerospace.

[56]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.

[57]  M. Gallagher,et al.  Measurement of boundary layer ozone concentrations on‐board a Skywalker unmanned aerial vehicle , 2014 .

[58]  Daniel Cariolle,et al.  Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model , 1986 .

[59]  K. Trenberth,et al.  Earth's Global Energy Budget , 2009 .

[60]  Antony D. Clarke,et al.  Light-absorbing impurities in Arctic snow , 2010 .

[61]  Bernard Pinty,et al.  Do we (need to) care about canopy radiation schemes in DGVMs? Caveats and potential impacts , 2014 .

[62]  J. Kay,et al.  Global Climate Impacts of Fixing the Southern Ocean Shortwave Radiation Bias in the Community Earth System Model (CESM) , 2015 .

[63]  Ioc Unesco,et al.  Global Sea Level Observing System (GLOSS) Implementation Plan-1997 , 1997 .

[64]  Myles R. Allen,et al.  Constraining the Ratio of Global Warming to Cumulative CO2 Emissions Using CMIP5 Simulations , 2013 .

[65]  W. Gates AMIP: The Atmospheric Model Intercomparison Project. , 1992 .

[66]  Hideki Kobayashi,et al.  RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models , 2011 .

[67]  P. D. Thompson,et al.  Uncertainty of Initial State as a Factor in the Predictability of Large Scale Atmospheric Flow Patterns , 1957 .

[68]  U. Schneider,et al.  A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present , 2012 .

[69]  Shian-Jiann Lin,et al.  Simulated Global Swell and Wind-Sea Climate and Their Responses to Anthropogenic Climate Change at the End of the Twenty-First Century , 2014 .

[70]  J. Lamarque,et al.  The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics , 2012 .

[71]  Philip Lewis,et al.  The fourth radiation transfer model intercomparison (RAMI‐IV): Proficiency testing of canopy reflectance models with ISO‐13528 , 2013 .

[72]  Clément Albergel,et al.  Assimilation of surface albedo and vegetation states from satellite observations and their impact on numerical weather prediction , 2015 .

[73]  Timothy J. Smyth,et al.  Assimilation of remotely-sensed optical properties to improve marine biogeochemistry modelling , 2014 .

[74]  F. Pappenberger,et al.  ERA-Interim/Land: a global land surface reanalysis data set , 2015 .

[75]  R. Rummel,et al.  GOCE gravitational gradiometry , 2011 .

[76]  Michael C. Dietze,et al.  The role of data assimilation in predictive ecology , 2014 .

[77]  Venkatramani Balaji,et al.  Improved Seasonal Prediction of Temperature and Precipitation over Land in a High-Resolution GFDL Climate Model , 2015 .

[78]  Kevin E. Trenberth,et al.  Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses , 2011 .

[79]  D. Gallaher,et al.  New estimates of Arctic and Antarctic sea ice extent during September 1964 from recovered Nimbus I satellite imagery , 2013 .

[80]  Oliver Montenbruck,et al.  Innovative Remote Sensing Using the International Space Station: GNSS Reflectometry with GEROS , 2014, IGARSS 2014.

[81]  Eric Guilyardi,et al.  Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO , 2013, Climate Dynamics.

[82]  Jindi Wang,et al.  Sequential Method with Incremental Analysis Update to Retrieve Leaf Area Index from Time Series MODIS Reflectance Data , 2014, Remote. Sens..

[83]  Arun Kumar,et al.  Salinity anomaly as a trigger for ENSO events , 2014, Scientific Reports.

[84]  John A. Church,et al.  Changing Expendable Bathythermograph Fall Rates and Their Impact on Estimates of Thermosteric Sea Level Rise , 2008 .

[85]  Bertrand Theodore,et al.  Land Surface Albedo from Geostationary Satelites: A Multiagency Collaboration within SCOPE-CM , 2013 .

[86]  D. Ford,et al.  Assimilating GlobColour ocean colour data into a pre-operational physical-biogeochemical model , 2012 .

[87]  Fabienne Maignan,et al.  Constraining a global ecosystem model with multi-site eddy-covariance data , 2012 .

[88]  P. Levelt,et al.  ESA's sentinel missions in support of Earth system science , 2012 .

[89]  Michael Schulz,et al.  Information from paleoclimate archives , 2013 .

[90]  Matthieu Lengaigne,et al.  About the role of Westerly Wind Events in the possible development of an El Niño in 2014 , 2014 .

[91]  Lars Isaksen,et al.  Initialisation of Land Surface Variables for Numerical Weather Prediction , 2014, Surveys in Geophysics.

[92]  S. Wich,et al.  Dawn of Drone Ecology: Low-Cost Autonomous Aerial Vehicles for Conservation , 2012 .

[93]  Yongxiang Hu,et al.  Are climate-related changes to the character of global-mean precipitation predictable? , 2010 .

[94]  Corinne Le Quéré,et al.  Carbon and Other Biogeochemical Cycles , 2014 .

[95]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[96]  Johannes W. Kaiser,et al.  Recommended fire emission service enhancements , 2013 .

[97]  P. Ceccato,et al.  GEO Task US-09-01a: Critical Earth Observations Priorities , 2010 .

[98]  Christian Frankenberg,et al.  Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2 A‐band spectra of reflected sun‐light , 2011 .

[99]  C. Publications Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system , 2014 .

[100]  John R. G. Townshend,et al.  The GCOS at 20 years: the origin, achievement and future development of the Global Climate Observing System , 2012 .

[101]  C. Schär,et al.  The global energy balance from a surface perspective , 2013, Climate Dynamics.

[102]  Marc Bocquet,et al.  Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations , 2014 .

[103]  Thomas C. Peterson,et al.  Reference Upper-Air Observations for Climate: Rationale, Progress, and Plans , 2009 .

[104]  Mikael Ehn,et al.  Observations of aminium salts in atmospheric nanoparticles and possible climatic implications , 2010, Proceedings of the National Academy of Sciences.

[105]  Li Zhang,et al.  An Analysis of the Nonstationarity in the Bias of Sea Surface Temperature Forecasts for the NCEP Climate Forecast System (CFS) Version 2 , 2012 .

[106]  P. Janssen The Interaction of Ocean Waves and Wind , 2004 .

[107]  Kevin E. Trenberth,et al.  Distinctive climate signals in reanalysis of global ocean heat content , 2013 .

[108]  Merritt N. Deeter,et al.  Ten years of CO emissions as seen from Measurements of Pollution in the Troposphere (MOPITT) , 2011 .

[109]  Lukas H. Meyer,et al.  Summary for Policymakers , 2022, The Ocean and Cryosphere in a Changing Climate.

[110]  S. Carpenter,et al.  Solutions for a cultivated planet , 2011, Nature.

[111]  Mark Dowell,et al.  Strategy Towards an Architecture for Climate Monitoring from Space , 2013 .

[112]  William P. Mahoney,et al.  Realizing the Potential of Vehicle-Based Observations , 2013 .

[113]  Yi Y. Liu,et al.  Evaluating global trends (1988–2010) in harmonized multi‐satellite surface soil moisture , 2012 .

[114]  W. Wagner,et al.  Improving runoff prediction through the assimilation of the ASCAT soil moisture product , 2010 .

[115]  Mati Kahru,et al.  Evaluating the ocean biogeochemical components of Earth system models using atmospheric potential oxygen and ocean color data , 2014 .

[116]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[117]  O. Schneising,et al.  Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations , 2014 .

[118]  Brian F. Thomas,et al.  River basin flood potential inferred using GRACE gravity observations at several months lead time , 2014 .

[119]  J. Penner,et al.  Intercomparison of the cloud water phase among global climate models , 2014 .

[120]  Peter Bergamaschi,et al.  A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements , 2013 .

[121]  Lars Isaksen,et al.  Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations , 2012 .

[122]  M. Balmaseda,et al.  Evaluation of the ECMWF ocean reanalysis system ORAS4 , 2013 .

[123]  Piero Lionello,et al.  Assimilation of altimeter data in a global third-generation wave model , 1992 .

[124]  G. Meehl,et al.  Near-term climate change:projections and predictability , 2013 .

[125]  Martyn P. Chipperfield,et al.  On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing , 2012 .

[126]  J. Muñoz-Sabater Incorporation of Passive Microwave Brightness Temperatures in the ECMWF Soil Moisture Analysis , 2015 .

[127]  Hendrik Elbern,et al.  Emission rate and chemical state estimation by 4-dimensional variational inversion , 2007 .

[128]  Jean-Noël Thépaut,et al.  The MACC reanalysis: an 8 yr data set of atmospheric composition , 2012 .

[129]  Dario Papale,et al.  Natural land carbon dioxide exchanges in the ECMWF integrated forecasting system: Implementation and offline validation , 2013 .

[130]  G. Vecchi,et al.  On the Seasonal Forecasting of Regional Tropical Cyclone Activity , 2014 .

[131]  Walter H. F. Smith,et al.  New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure , 2014, Science.

[132]  Simon Read,et al.  ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP , 2015 .

[133]  Joyce E. Penner,et al.  Aircraft soot indirect effect on large‐scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative? , 2013 .

[134]  Jean-Christophe Golaz,et al.  Evaluating cloud tuning in a climate model with satellite observations , 2013 .

[135]  I. Dharssi,et al.  Operational assimilation of ASCAT surface soil wetness at the Met Office , 2011 .

[136]  Lars Isaksen,et al.  Soil temperature at ECMWF: An assessment using ground‐based observations , 2015 .

[137]  Claude Boucher,et al.  Global geodetic observatories , 2015 .

[138]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[139]  F. Woodward,et al.  Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate , 2010, Science.

[140]  Sönke Zaehle,et al.  Carbon–nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks , 2011 .

[141]  Kristian Mogensen,et al.  A coupled data assimilation system for climate reanalysis , 2016 .

[142]  S. Houweling,et al.  Global CO 2 fluxes estimated from GOSAT retrievals of total column CO 2 , 2013 .

[143]  Karen Anderson,et al.  Lightweight unmanned aerial vehicles will revolutionize spatial ecology , 2013 .

[144]  A. Townsend Peterson,et al.  Essential biodiversity variables are not global , 2018, Biodiversity and Conservation.

[145]  T. Yasuda,et al.  Coupled Climate Simulation by Constraining Ocean Fields in a Coupled Model with Ocean Data , 2009 .

[146]  D. Dee,et al.  ERA‐20CM: a twentieth‐century atmospheric model ensemble , 2015 .

[147]  M. Heimann,et al.  Interannual sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme , 2014 .

[148]  R. Koster,et al.  Assessment and Enhancement of MERRA Land Surface Hydrology Estimates , 2011 .

[149]  W. Kellog,et al.  Effects of human activities on global climate , 1977 .

[150]  Charles D. Koven,et al.  Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models , 2013 .

[151]  J. Thepaut,et al.  Toward a Consistent Reanalysis of the Climate System , 2014 .

[152]  Nils Wedi,et al.  High-Resolution Global Climate Simulations with the ECMWF Model in Project Athena: Experimental Design, Model Climate, and Seasonal Forecast Skill , 2012 .

[153]  Peter Jan van Leeuwen,et al.  Balanced Ocean-Data Assimilation near the Equator , 2002 .

[154]  Christian Jakob,et al.  Going back to basics , 2014 .

[155]  L. Isaksen,et al.  The ERA-40 Reanalysis , 2004 .

[156]  G. Mann,et al.  Large contribution of natural aerosols to uncertainty in indirect forcing , 2013, Nature.

[157]  Philippe Ciais,et al.  Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions , 2011 .

[158]  Andrew Gettelman,et al.  Advanced Two-Moment Bulk Microphysics for Global Models. Part II: Global Model Solutions and Aerosol–Cloud Interactions* , 2015 .

[159]  Paul Poli,et al.  Atmospheric conservation properties in ERA‐Interim , 2011 .

[160]  A. Hollingsworth,et al.  Toward a Monitoring and Forecasting System For Atmospheric Composition: The GEMS Project , 2008 .

[161]  W.K. (Bill) Peterson,et al.  Electron conic distributions produced by solar ionizing radiation in planetary atmospheres , 2015 .

[162]  Atul K. Jain,et al.  Global carbon budget 2013 , 2013 .

[163]  G. Vecchi,et al.  Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model , 2012 .

[164]  C. Tebaldi,et al.  Long-term Climate Change: Projections, Commitments and Irreversibility , 2013 .

[165]  Yukio Yoshida,et al.  Satellite-inferred European carbon sink larger than expected , 2014 .

[166]  Henk Eskes,et al.  Global lightning NO x production estimated by an assimilation of multiple satellite data sets , 2013 .

[167]  Niels Bormann,et al.  Representing Equilibrium and Nonequilibrium Convection in Large-Scale Models , 2014 .

[168]  T. Haiden,et al.  A new equitable score suitable for verifying precipitation in numerical weather prediction , 2010 .

[169]  D. P. DEE,et al.  Bias and data assimilation , 2005 .

[170]  A. Robock,et al.  A New International Network for in Situ Soil Moisture Data , 2011 .

[171]  Gianpaolo Balsamo,et al.  Analysis of surface albedo and Leaf Area Index from satellite observations and their impact on numerical weather prediction , 2014 .

[172]  J. Pommereau,et al.  Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade , 2011 .

[173]  Fabienne Maignan,et al.  Global CO2 fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO2 total column , 2011 .

[174]  Peter Bergamaschi,et al.  Three decades of global methane sources and sinks , 2013 .

[175]  Bas Mijling,et al.  Using daily satellite observations to estimate emissions of short‐lived air pollutants on a mesoscopic scale , 2012 .

[176]  Ilse Aben,et al.  Comparison of CH4 inversions based on 15 months of GOSAT and SCIAMACHY observations , 2013 .

[177]  A. Simmons,et al.  The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy , 2014 .

[178]  Johannes Quaas,et al.  Estimates of aerosol radiative forcing from the MACC re-analysis , 2012 .

[179]  Hanna Vehkamäki,et al.  Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia , 2008 .

[180]  Olivier Boucher,et al.  Atmospheric inversion of SO 2 and primary aerosol emissions for the year 2010 , 2013 .

[181]  Pierre Brasseur,et al.  Toward a multivariate reanalysis of the North Atlantic Ocean biogeochemistry during 1998-2006 based on the assimilation of SeaWiFS chlorophyll data , 2012 .

[182]  Régis Borde,et al.  EUMETSAT Global AVHRR Wind Product , 2016 .

[183]  Hartmut Boesch,et al.  Inverse modelling of CH 4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY , 2014 .

[184]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[185]  Daniel M. Mitchell,et al.  Models versus radiosondes in the free atmosphere: A new detection and attribution analysis of temperature , 2013 .

[186]  G. Meehl,et al.  Decadal climate prediction: an update from the trenches , 2014 .

[187]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[188]  M. Rodwell,et al.  Toward Seamless Prediction: Calibration of Climate Change Projections Using Seasonal Forecasts , 2008 .

[189]  Kristian Mogensen,et al.  Arctic sea ice in the global eddy-permitting ocean reanalysis ORAP5 , 2017, Climate Dynamics.

[190]  A. Al Bitar,et al.  Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates , 2014, Remote Sensing of Environment.

[191]  A. Bodas‐Salcedo,et al.  Dreary state of precipitation in global models , 2010 .

[192]  Brian J. Hoskins,et al.  The potential for skill across the range of the seamless weather‐climate prediction problem: a stimulus for our science , 2013 .

[193]  S. Manabe,et al.  A Global Ocean-Atmosphere Climate Model. Part II. The Oceanic Circulation , 1975 .

[194]  G. Lapenta,et al.  Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS , 2015, 1503.06135.

[195]  S. Lehner,et al.  Synergy and fusion of optical and synthetic aperture radar satellite data for underwater topography estimation in coastal areas , 2011 .

[196]  P. W. Thorne,et al.  Revisiting the controversial issue of tropical tropospheric temperature trends , 2013 .

[197]  Vincent-Henri Peuch,et al.  Forecasting global atmospheric CO 2 , 2014 .

[198]  L. Isaksen,et al.  A simplified Extended Kalman Filter for the global operational soil moisture analysis at ECMWF , 2013 .

[199]  Makoto Saito,et al.  Regional CO2 flux estimates for 2009–2010 based on GOSAT and ground-based CO2 observations , 2012 .

[200]  Michael G. Bosilovich,et al.  Global Energy and Water Budgets in MERRA , 2011 .

[201]  Pierre Friedlingstein,et al.  Carbon Dioxide and Climate: Perspectives on a Scientific Assessment , 2013 .

[202]  B. Josse,et al.  Contribution of light-absorbing impurities in snow to Greenland/'s darkening since 2009 , 2014 .

[203]  Gerald M. Stokes,et al.  The Atmospheric Radiation Measurement Program , 2003 .

[204]  C. Kobayashi,et al.  The JRA-55 Reanalysis: General Specifications and Basic Characteristics , 2015 .

[205]  N. Meinshausen,et al.  Warming caused by cumulative carbon emissions towards the trillionth tonne , 2009, Nature.

[206]  G. Meehl,et al.  A Unified Modeling Approach to Climate System Prediction , 2009 .

[207]  Rowan Sutton,et al.  The impact of North Atlantic sea surface temperature errors on the simulation of North Atlantic European region climate , 2012 .

[208]  Jean-Christophe Golaz,et al.  Cloud tuning in a coupled climate model: Impact on 20th century warming , 2013 .

[209]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[210]  Ilse Aben,et al.  Assimilation of atmospheric methane products into the MACC-II system: from SCIAMACHY to TANSO and IASI , 2014 .

[211]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[212]  L. Horowitz,et al.  Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry , 2013 .

[213]  Larry W. Thomason,et al.  Improved stratospheric aerosol extinction profiles from SCIAMACHY: validation and sample results , 2015 .

[214]  J. Urban,et al.  Vertical structure of stratospheric water vapour trends derived from merged satellite data. , 2014, Nature geoscience.

[215]  C. Mass,et al.  Surface Pressure Observations from Smartphones: A Potential Revolution for High-Resolution Weather Prediction? , 2014 .

[216]  Allison L. Steiner,et al.  Quantifying the contribution of environmental factors to isoprene flux interannual variability , 2012 .

[217]  Ari Laaksonen,et al.  Organic aerosol formation via sulphate cluster activation , 2004 .

[218]  Arnaud Mialon,et al.  The SMOS Soil Moisture Retrieval Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[219]  Guillaume Ramillien,et al.  Earth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space , 2013, Surveys in Geophysics.

[220]  A. Cazenave,et al.  The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables , 2013 .

[221]  Peter Bergamaschi,et al.  Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements , 2013 .

[222]  Mike Lockwood,et al.  SOLAR INFLUENCES ON CLIMATE , 2009 .

[223]  M. Rodwell,et al.  Intercomparison of Global Model Precipitation Forecast Skill in 2010/11 Using the SEEPS Score , 2012 .

[224]  Kathrin Wapler,et al.  TWP‐ICE global atmospheric model intercomparison: Convection responsiveness and resolution impact , 2012 .

[225]  D. Hartmann,et al.  The Atmospheric Energy Constraint on Global-Mean Precipitation Change , 2014 .

[226]  Sergei Rudenko,et al.  Improved Sea Level record over the satellite altimetry era (1993-2010) from the Climate Change Initiative project , 2015 .

[227]  Philippe Ciais,et al.  Spaceborne remote sensing of greenhouse gas concentrations , 2010 .

[228]  J. Randerson,et al.  An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker , 2007, Proceedings of the National Academy of Sciences.

[229]  Yosuke Fujii,et al.  Role of the Ocean Observing System in an End-to-End Seasonal Forecasting System , 2010 .

[230]  Joaquín Muñoz Sabater,et al.  Incorporation of Passive Microwave Brightness Temperatures in the ECMWF Soil Moisture Analysis , 2015, Remote. Sens..

[231]  E. Middleton,et al.  First observations of global and seasonal terrestrial chlorophyll fluorescence from space , 2010 .

[232]  Charles Doutriaux,et al.  Performance metrics for climate models , 2008 .

[233]  Y. Niwa,et al.  Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. , 2013 .

[234]  Bruce J. Haines,et al.  The challenges in long-term altimetry calibration for addressing the problem of global sea level change , 2013 .

[235]  Nipa Phojanamongkolkij,et al.  Achieving Climate Change Absolute Accuracy in Orbit , 2013 .

[236]  Peng Zhang,et al.  Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C , 2016 .

[237]  C. Sweeney,et al.  Advances in quantifying air-sea gas exchange and environmental forcing. , 2009, Annual review of marine science.

[238]  D. Butler Earth observation enters next phase , 2014, Nature.

[239]  A. Rosati,et al.  System Design and Evaluation of Coupled Ensemble Data Assimilation for Global Oceanic Climate Studies , 2007 .

[240]  Carl A. Mears,et al.  Volcanic contribution to decadal changes in tropospheric temperature , 2014 .

[241]  Kristian Mogensen,et al.  ECMWF seasonal forecast system 3 and its prediction of sea surface temperature , 2011 .

[242]  L. K. Gohar,et al.  Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernme , 2006 .

[243]  Kevin E. Trenberth,et al.  The Annual Cycle of the Energy Budget. Part II: Meridional Structures and Poleward Transports , 2008 .

[244]  Lionel Jarlan,et al.  Impact of a satellite-derived leaf area index monthly climatology in a global numerical weather prediction model , 2013 .

[245]  Howard J. Diamond Status of the U.S. National Global Climate Observing System (GCOS) Program , 2001 .

[246]  Fabrizio Giulietti,et al.  UAV Thermal Infrared Remote Sensing of an Italian Mud Volcano , 2013 .

[247]  A. Hollingsworth,et al.  Some aspects of the improvement in skill of numerical weather prediction , 2002 .