Hybrid multi-objective Bayesian estimation of distribution algorithm: a comparative analysis for the multi-objective knapsack problem

Nowadays, a number of metaheuristics have been developed for efficiently solving multi-objective optimization problems. Estimation of distribution algorithms are a special class of metaheuristic that intensively apply probabilistic modeling and, as well as local search methods, are widely used to make the search more efficient. In this paper, we apply a Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm (HMOBEDA) in multi and many objective scenarios by modeling the joint probability of decision variables, objectives, and the configuration parameters of an embedded local search (LS). We analyze the benefits of the online configuration of LS parameters by comparing the proposed approach with LS off-line versions using instances of the multi-objective knapsack problem with two to five and eight objectives. HMOBEDA is also compared with five advanced evolutionary methods using the same instances. Results show that HMOBEDA outperforms the other approaches including those with off-line configuration. HMOBEDA not only provides the best value for hypervolume indicator and IGD metric in most of the cases, but it also computes a very diverse solutions set close to the estimated Pareto front.

[1]  Abdullah Al Mamun,et al.  Multi-Objective Optimization with Estimation of Distribution Algorithm in a Noisy Environment , 2013, Evolutionary Computation.

[2]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[3]  R. Sabourin,et al.  Bayesian network as an adaptive parameter setting approach for genetic algorithms , 2016, Complex & Intelligent Systems.

[4]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[5]  Carolina P. de Almeida,et al.  HMOBEDA: Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm , 2016, GECCO.

[6]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[7]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[8]  Mariano Luque,et al.  Modified interactive chebyshev algorithm (MICA) for non-convex multiobjective programming , 2015, Optim. Lett..

[9]  Carlos A. Coello Coello,et al.  HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms , 2010, IEEE Transactions on Evolutionary Computation.

[10]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .

[11]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[12]  Qingfu Zhang,et al.  An Estimation of Distribution Algorithm With Cheap and Expensive Local Search Methods , 2015, IEEE Transactions on Evolutionary Computation.

[13]  Hisao Ishibuchi,et al.  Scalability of multiobjective genetic local search to many-objective problems: Knapsack problem case studies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[14]  Concha Bielza,et al.  A review on probabilistic graphical models in evolutionary computation , 2012, Journal of Heuristics.

[15]  Isabelle Bloch,et al.  Inexact graph matching by means of estimation of distribution algorithms , 2002, Pattern Recognit..

[16]  Carlos A. Coello Coello,et al.  An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[17]  Concha Bielza,et al.  A review on evolutionary algorithms in Bayesian network learning and inference tasks , 2013, Inf. Sci..

[18]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[19]  Hisao Ishibuchi,et al.  Behavior of Multiobjective Evolutionary Algorithms on Many-Objective Knapsack Problems , 2015, IEEE Transactions on Evolutionary Computation.

[20]  Qingfu Zhang,et al.  Hybrid Estimation of Distribution Algorithm for Multiobjective Knapsack Problem , 2004, EvoCOP.

[21]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[22]  Pedro Larrañaga,et al.  Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation , 2010, Evolutionary Computation.

[23]  Marco Laumanns,et al.  Bayesian Optimization Algorithms for Multi-objective Optimization , 2002, PPSN.

[24]  Alexandre C. B. Delbem,et al.  Otimização por decomposição. , 2011 .

[25]  Martin Pelikan,et al.  An introduction and survey of estimation of distribution algorithms , 2011, Swarm Evol. Comput..

[26]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[27]  Kevin B. Korb,et al.  Bayesian Artificial Intelligence, Second Edition , 2010 .

[28]  Frederico G. Guimarães,et al.  Memetic self-adaptive evolution strategies applied to the maximum diversity problem , 2014, Optim. Lett..

[29]  Hisao Ishibuchi,et al.  Preference-based NSGA-II for many-objective knapsack problems , 2014, 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS).

[30]  Concha Bielza,et al.  Optimal row and column ordering to improve table interpretation using estimation of distribution algorithms , 2011, J. Heuristics.

[31]  Heinz Mühlenbein,et al.  Convergence Theory and Applications of the Factorized Distribution Algorithm , 2015, CIT 2015.

[32]  Constantin F. Aliferis,et al.  Algorithms for Large Scale Markov Blanket Discovery , 2003, FLAIRS.

[33]  Joseph R. Kasprzyk,et al.  A new epsilon-dominance hierarchical Bayesian optimization algorithm for large multiobjective monitoring network design problems , 2008 .

[34]  M. Pelikán,et al.  The Bivariate Marginal Distribution Algorithm , 1999 .

[35]  M. Degroot Optimal Statistical Decisions , 1970 .

[36]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[37]  Jie Zhang,et al.  Consistencies and Contradictions of Performance Metrics in Multiobjective Optimization , 2014, IEEE Transactions on Cybernetics.

[38]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[39]  Johannes Bader,et al.  Hypervolume-based search for multiobjective optimization: Theory and methods , 2010 .

[40]  Thomas Stützle,et al.  F-Race and Iterated F-Race: An Overview , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[41]  Kevin B. Korb,et al.  Bayesian Artificial Intelligence , 2004, Computer science and data analysis series.

[42]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[43]  Ye Xu,et al.  An effective hybrid EDA-based algorithm for solving multidimensional knapsack problem , 2012, Expert Syst. Appl..

[44]  Constantin F. Aliferis,et al.  Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation , 2010, J. Mach. Learn. Res..

[45]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[46]  Concha Bielza,et al.  Multiobjective Estimation of Distribution Algorithm Based on Joint Modeling of Objectives and Variables , 2014, IEEE Transactions on Evolutionary Computation.

[47]  Patrick Reed,et al.  Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems , 2011, Eur. J. Oper. Res..

[48]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[49]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[50]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[51]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithm test suites , 1999, SAC '99.

[52]  Martin Pelikan,et al.  Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms , 2010, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[53]  Constantin F. Aliferis,et al.  The max-min hill-climbing Bayesian network structure learning algorithm , 2006, Machine Learning.

[54]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[55]  Leslie Pérez Cáceres,et al.  The irace package: Iterated racing for automatic algorithm configuration , 2016 .

[56]  J. A. Lozano,et al.  Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms (Studies in Fuzziness and Soft Computing) , 2006 .

[57]  Pedro Larrañaga,et al.  Combining variable neighborhood search and estimation of distribution algorithms in the protein side chain placement problem , 2007, J. Heuristics.

[58]  Qingfu Zhang,et al.  Hybridization of Decomposition and Local Search for Multiobjective Optimization , 2014, IEEE Transactions on Cybernetics.

[59]  Dalessandro Soares Vianna,et al.  Local search-based heuristics for the multiobjective multidimensional knapsack problem , 2012 .

[60]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[61]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[62]  Yong-Chang Jiao,et al.  MOEA/D with Uniform Design for Solving Multiobjective Knapsack Problems , 2013, J. Comput..

[63]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[64]  Siddhartha Shakya,et al.  An EDA based on local markov property and gibbs sampling , 2008, GECCO '08.