Simultaneously Fitting and Segmenting Multiple-Structure Data with Outliers

We propose a robust fitting framework, called Adaptive Kernel-Scale Weighted Hypotheses (AKSWH), to segment multiple-structure data even in the presence of a large number of outliers. Our framework contains a novel scale estimator called Iterative Kth Ordered Scale Estimator (IKOSE). IKOSE can accurately estimate the scale of inliers for heavily corrupted multiple-structure data and is of interest by itself since it can be used in other robust estimators. In addition to IKOSE, our framework includes several original elements based on the weighting, clustering, and fusing of hypotheses. AKSWH can provide accurate estimates of the number of model instances and the parameters and the scale of each model instance simultaneously. We demonstrate good performance in practical applications such as line fitting, circle fitting, range image segmentation, homography estimation, and two--view-based motion segmentation, using both synthetic data and real images.

[1]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[2]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  James V. Miller,et al.  MUSE: robust surface fitting using unbiased scale estimates , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  Erkki Oja,et al.  A new curve detection method: Randomized Hough transform (RHT) , 1990, Pattern Recognit. Lett..

[5]  Younjeong Lee,et al.  The Estimating Optimal Number of Gaussian Mixtures Based on Incremental k-means for Speaker Identification , 2006 .

[6]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[7]  David Suter,et al.  Robust adaptive-scale parametric model estimation for computer vision , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Peter Meer,et al.  Simultaneous multiple 3D motion estimation via mode finding on Lie groups , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[9]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[10]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[11]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[12]  Tat-Jun Chin,et al.  Robust fitting of multiple structures: The statistical learning approach , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[13]  B. S. Manjunath,et al.  The multiRANSAC algorithm and its application to detect planar homographies , 2005, IEEE International Conference on Image Processing 2005.

[14]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[15]  Peter Meer,et al.  Nonlinear Mean Shift over Riemannian Manifolds , 2009, International Journal of Computer Vision.

[16]  Charles V. Stewart,et al.  Bias in robust estimation caused by discontinuities and multiple structures , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  David Suter,et al.  Robust segmentation of visual data using ranked unbiased scale estimate , 1999, Robotica.

[19]  Charles V. Stewart,et al.  MINPRAN: A New Robust Estimator for Computer Vision , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Jiri Matas,et al.  Matching with PROSAC - progressive sample consensus , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[21]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[22]  Rae-Hong Park,et al.  Robust Adaptive Segmentation of Range Images , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Haifeng Chen,et al.  Robust regression with projection based M-estimators , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[24]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[25]  Adam Krzyzak,et al.  Robust Estimation for Range Image Segmentation and Reconstruction , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[27]  Mark Zwolinski,et al.  Mutual Information Theory for Adaptive Mixture Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Philip H. S. Torr,et al.  The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix , 1997, International Journal of Computer Vision.

[30]  David W. Murray,et al.  Guided Sampling and Consensus for Motion Estimation , 2002, ECCV.

[31]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[32]  Daniel Mirota,et al.  Robust motion estimation and structure recovery from endoscopic image sequences with an Adaptive Scale Kernel Consensus estimator , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[34]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[35]  Xavier Binefa,et al.  A Density-Based Data Reduction Algorithm for Robust Estimators , 2007, IbPRIA.

[36]  Andrea Fusiello,et al.  Robust Multiple Structures Estimation with J-Linkage , 2008, ECCV.

[37]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[38]  Jana Kosecka,et al.  Nonparametric Estimation of Multiple Structures with Outliers , 2006, WDV.

[39]  K. Kanatani,et al.  Estimating the Number of Independent Motions for Multibody Motion Segmentation , 2002 .

[40]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[41]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[42]  Edward H. Adelson,et al.  A unified mixture framework for motion segmentation: incorporating spatial coherence and estimating the number of models , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[43]  David Suter,et al.  Robust Fitting by Adaptive-Scale Residual Consensus , 2004, ECCV.

[44]  Daniel Mirota,et al.  A Generalized Kernel Consensus-Based Robust Estimator , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[46]  R. Hoseinnezhad,et al.  A Novel High Breakdown M-estimator for Visual Data Segmentation , 2007, 2007 IEEE 11th International Conference on Computer Vision.