Mining materials design rules from data: The example of polymer dielectrics

Mining of currently available and evolving materials databases to discover structure–chemistry–property relationships is critical to developing an accelerated materials design framework. The design of new and advanced polymeric dielectrics for capacitive energy storage has been hampered by the lack of sufficient data encompassing wide enough chemical spaces. Here, data mining and analysis techniques are applied on a recently presented computational data set of around 1100 organic polymers, organometallic polymers, and related molecular crystals, in order to obtain qualitative understanding of the origins of dielectric and electronic properties. By probing the relationships between crucial chemical and structural features of materials and their dielectric constant and band gap, design rules are devised for optimizing either property. Learning from this data set provides guidance to experiments and to future computations, as well as a way of expanding the pool of promising polymer candidates for dielectric ...

[1]  Rampi Ramprasad,et al.  Rational design and synthesis of polythioureas as capacitor dielectrics , 2015 .

[2]  Andrew R. Leach,et al.  An Introduction to Chemoinformatics , 2003 .

[3]  Ghanshyam Pilania,et al.  Rational design of all organic polymer dielectrics , 2014, Nature Communications.

[4]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[5]  Felix A Faber,et al.  Machine Learning Energies of 2 Million Elpasolite (ABC_{2}D_{6}) Crystals. , 2015, Physical review letters.

[6]  Engineering,et al.  Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques , 2016 .

[7]  Gerbrand Ceder,et al.  Predicting crystal structure by merging data mining with quantum mechanics , 2006, Nature materials.

[8]  Peter Schwerdtfeger,et al.  ATOMIC STATIC DIPOLE POLARIZABILITIES , 2006 .

[9]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[10]  Arun Mannodi-Kanakkithodi,et al.  Poly(dimethyltin glutarate) as a Prospective Material for High Dielectric Applications , 2015, Advanced materials.

[11]  O. A. von Lilienfeld,et al.  Electronic spectra from TDDFT and machine learning in chemical space. , 2015, The Journal of chemical physics.

[12]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .

[13]  G. Sotzing,et al.  Optimization of Organotin Polymers for Dielectric Applications. , 2016, ACS applied materials & interfaces.

[14]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[15]  Chiho Kim,et al.  Finding New Perovskite Halides via Machine Learning , 2016, Front. Mater..

[16]  Qiang Zhu,et al.  Predicting polymeric crystal structures by evolutionary algorithms. , 2014, The Journal of chemical physics.

[17]  Alok Choudhary,et al.  Combinatorial screening for new materials in unconstrained composition space with machine learning , 2014 .

[18]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[19]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[20]  Rampi Ramprasad,et al.  Machine Learning Force Fields: Construction, Validation, and Outlook , 2016, 1610.02098.

[21]  Christopher M Wolverton,et al.  Atomistic calculations and materials informatics: A review , 2017 .

[22]  A. G. Davies,et al.  Organometallic reactions. Part VI. The addition of the Sn–O bond to the carbonyl group , 1967 .

[23]  Rampi Ramprasad,et al.  Adaptive machine learning framework to accelerate ab initio molecular dynamics , 2015 .

[24]  W. Hume-rothery Atomic theory for students of metallurgy , 1947 .

[25]  Koon Gee Neoh,et al.  Polymer electronic memories: Materials, devices and mechanisms , 2008 .

[26]  Arun Mannodi-Kanakkithodi,et al.  Machine Learning Strategy for Accelerated Design of Polymer Dielectrics , 2016, Scientific Reports.

[27]  Stefan Goedecker,et al.  Crystal structure prediction using the minima hopping method. , 2010, The Journal of chemical physics.

[28]  Rampi Ramprasad,et al.  Dielectric Properties of Carbon, Silicon and Germanium Based Polymers: A First Principles Study , 2012 .

[29]  Svetlozar Nestorov,et al.  The Computational Materials Repository , 2012, Computing in Science & Engineering.

[30]  S. Stigler Francis Galton's Account of the Invention of Correlation , 1989 .

[31]  Sanguthevar Rajasekaran,et al.  Accelerating materials property predictions using machine learning , 2013, Scientific Reports.

[32]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[33]  Roman M. Balabin,et al.  Neural network approach to quantum-chemistry data: accurate prediction of density functional theory energies. , 2009, The Journal of chemical physics.

[34]  C. C. Wang,et al.  New Group IV Chemical Motifs for Improved Dielectric Permittivity of Polyethylene , 2013, J. Chem. Inf. Model..

[35]  R. Ramprasad,et al.  Compounds based on Group 14 elements: building blocks for advanced insulator dielectrics design , 2014, Journal of Materials Science.

[36]  Anubhav Jain,et al.  Finding Nature′s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory. , 2010 .

[37]  Arun Mannodi-Kanakkithodi,et al.  Critical assessment of regression-based machine learning methods for polymer dielectrics , 2016 .

[38]  Atsuto Seko,et al.  Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids , 2013, 1310.1546.

[39]  Liping Yu,et al.  Theoretical prediction and experimental realization of new stable inorganic materials using the inverse design approach. , 2013, Journal of the American Chemical Society.

[40]  Li Li,et al.  Understanding Kernel Ridge Regression: Common behaviors from simple functions to density functionals , 2015, ArXiv.

[41]  Rampi Ramprasad,et al.  Learning scheme to predict atomic forces and accelerate materials simulations , 2015, 1505.02701.

[42]  G. Sotzing,et al.  Rationally designed polyimides for high-energy density capacitor applications. , 2014, ACS applied materials & interfaces.

[43]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[44]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[45]  G. Pilania,et al.  Machine learning bandgaps of double perovskites , 2016, Scientific Reports.

[46]  Klaus-Robert Müller,et al.  Finding Density Functionals with Machine Learning , 2011, Physical review letters.

[47]  Klaus-Robert Müller,et al.  Optimizing transition states via kernel-based machine learning. , 2012, The Journal of chemical physics.

[48]  Ramamurthy Ramprasad,et al.  How critical are the van der Waals interactions in polymer crystals? , 2012, The journal of physical chemistry. A.

[49]  S. Goedecker Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.

[50]  Keisuke Takahashi,et al.  Material synthesis and design from first principle calculations and machine learning , 2016 .

[51]  Li Li,et al.  Understanding Machine-learned Density Functionals , 2014, ArXiv.

[52]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[53]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[54]  Frank R Burden,et al.  Quantitative structure-property relationship modeling of diverse materials properties. , 2012, Chemical reviews.

[55]  James Theiler,et al.  Accelerated search for materials with targeted properties by adaptive design , 2016, Nature Communications.

[56]  P. Hohenberg,et al.  Inhomogeneous electron gas , 1964 .

[57]  David Vanderbilt,et al.  Polarization-based calculation of the dielectric tensor of polar crystals , 1997 .

[58]  Chiho Kim,et al.  A polymer dataset for accelerated property prediction and design , 2016, Scientific Data.

[59]  R. Ramprasad,et al.  Machine Learning in Materials Science , 2016 .

[60]  Anubhav Jain,et al.  Computational predictions of energy materials using density functional theory , 2016 .

[61]  Klaus-Robert Müller,et al.  Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies. , 2013, Journal of chemical theory and computation.

[62]  K. Müller,et al.  Fast and accurate modeling of molecular atomization energies with machine learning. , 2011, Physical review letters.

[63]  Matthias Rupp,et al.  Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach. , 2015, Journal of chemical theory and computation.

[64]  Qiang Zhu,et al.  Constrained evolutionary algorithm for structure prediction of molecular crystals: methodology and applications. , 2012, Acta crystallographica. Section B, Structural science.

[65]  Kristin A. Persson,et al.  Predicting crystal structures with data mining of quantum calculations. , 2003, Physical review letters.

[66]  Rampi Ramprasad,et al.  The rational design of polyurea & polyurethane dielectric materials , 2013 .

[67]  Yang Yang,et al.  Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. , 2015, Chemical reviews.

[68]  Antonio Facchetti,et al.  π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications† , 2011 .

[69]  S. Boggs,et al.  Advanced polymeric dielectrics for high energy density applications , 2016 .

[70]  Arun Mannodi-Kanakkithodi,et al.  Rational Co‐Design of Polymer Dielectrics for Energy Storage , 2016, Advanced materials.

[71]  Arun Mannodi-Kanakkithodi,et al.  Accelerated materials property predictions and design using motif-based fingerprints , 2015, 1503.07503.

[72]  Arun Mannodi-Kanakkithodi,et al.  Rational Design of Organotin Polyesters , 2015 .

[73]  J. Vybíral,et al.  Big data of materials science: critical role of the descriptor. , 2014, Physical review letters.

[74]  Artem R. Oganov,et al.  Machine learning scheme for fast extraction of chemically interpretable interatomic potentials , 2016 .

[75]  Felix A Faber,et al.  Crystal structure representations for machine learning models of formation energies , 2015, 1503.07406.

[76]  Teng-Chih Chao,et al.  Synthesis, Characterization, and Photovoltaic Properties of Novel Semiconducting Polymers with Thiophene−Phenylene−Thiophene (TPT) as Coplanar Units , 2008 .

[77]  Chiho Kim,et al.  From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown , 2016 .

[78]  E. C. STONER,et al.  Atomic Theory for Students of Metallurgy , 1947, Nature.

[79]  Bülent Yener,et al.  Image driven machine learning methods for microstructure recognition , 2016 .

[80]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[81]  T. Lookman,et al.  Multi-objective optimization techniques to design the Pareto front of organic dielectric polymers , 2016 .

[82]  Rampi Ramprasad,et al.  A study of adatom ripening on an Al (1 1 1) surface with machine learning force fields , 2016, 1610.04684.

[83]  D. W. Van Krevelen,et al.  CHAPTER 1 – POLYMER PROPERTIES , 1997 .

[84]  Tim Mueller,et al.  Machine Learning in Materials Science , 2016 .