The variable, fractional-order discrete-time PD controller in the IISv1.3 robot arm control

In this paper, the discrete differentiation order functions of the variable, fractional-order PD controller (VFOPD) are considered. In the proposed VFOPD controller, a variable, fractional-order backward difference is applied to perform closed-loop, system error, discrete-time differentiation. The controller orders functions which may be related to the controller input or output signal or an input and output signal. An example of the VFOPD controller is applied to the robot arm closed-loop control due to system changes in moment of inertia. The close-loop system step responses are presented.

[1]  Izabela Ewa Nielsen,et al.  Proceedings of the 17th World Congress , 2008 .

[2]  Vincent D. Blondel,et al.  Proceedings of the 2000 American Control Conference , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[3]  Antonio Visioli,et al.  Tuning rules for optimal PID and fractional-order PID controllers , 2011 .

[4]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[5]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[6]  I. Podlubny Fractional differential equations , 1998 .

[7]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[8]  Emmanuel Ifeachor,et al.  Digital Signal Processing: A Practical Approach , 1993 .

[9]  Anissa Zergaïnoh-Mokraoui,et al.  State-space representation for fractional order controllers , 2000, Autom..

[10]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[11]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .

[12]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[13]  Duarte Valério,et al.  Tuning of fractional PID controllers with Ziegler-Nichols-type rules , 2006, Signal Process..

[14]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[15]  YangQuan Chen,et al.  Fractional-order [proportional derivative] controller for robust motion control: Tuning procedure and validation , 2009, 2009 American Control Conference.

[16]  Chenyu Hu,et al.  Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527) , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[17]  Celaleddin Yeroglu,et al.  Classical controller design techniques for fractional order case. , 2011, ISA transactions.

[18]  Katsuhiko Ogata,et al.  Discrete-time control systems , 1987 .

[19]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[20]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[21]  Yangquan Chen,et al.  A Fractional Order Proportional and Derivative (FOPD) Motion Controller: Tuning Rule and Experiments , 2010, IEEE Transactions on Control Systems Technology.